首页> 美国卫生研究院文献>other >A resolution adaptive deep hierarchical (RADHicaL) learning scheme applied to nuclear segmentation of digital pathology images
【2h】

A resolution adaptive deep hierarchical (RADHicaL) learning scheme applied to nuclear segmentation of digital pathology images

机译:分辨率自适应深度分层(RADHicaL)学习方案应用于数字病理图像的核分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deep learning (DL) has recently been successfully applied to a number of image analysis problems. However, DL approaches tend to be inefficient for segmentation on large image data, such as high-resolution digital pathology slide images. For example, typical breast biopsy images scanned at 40× magnification contain billions of pixels, of which usually only a small percentage belong to the class of interest. For a typical naïve deep learning scheme, parsing through and interrogating all the image pixels would represent hundreds if not thousands of hours of compute time using high performance computing environments. In this paper, we present a resolution adaptive deep hierarchical (RADHicaL) learning scheme wherein DL networks at lower resolutions are leveraged to determine if higher levels of magnification, and thus computation, are necessary to provide precise results. We evaluate our approach on a nuclear segmentation task with a cohort of 141 ER+ breast cancer images and show we can reduce computation time on average by about 85%. Expert annotations of 12,000 nuclei across these 141 images were employed for quantitative evaluation of RADHicaL. A head-to-head comparison with a naïve DL approach, operating solely at the highest magnification, yielded the following performance metrics: .9407 vs .9854 Detection Rate, .8218 vs .8489 F-score, .8061 vs .8364 true positive rate and .8822 vs 0.8932 positive predictive value. Our performance indices compare favourably with state of the art nuclear segmentation approaches for digital pathology images.
机译:深度学习(DL)最近已成功应用于许多图像分析问题。但是,对于高分辨率图像病理切片图像之类的大图像数据,DL方法往往效率不高。例如,以40倍放大倍数扫描的典型乳房活检图像包含数十亿个像素,其中通常只有一小部分属于关注类别。对于典型的朴素深度学习方案,使用高性能计算环境解析并询问所有图像像素将代表数百小时甚至数千小时的计算时间。在本文中,我们提出了一种分辨率自适应深度分层(RADHicaL)学习方案,其中利用较低分辨率的DL网络来确定是否需要较高的放大倍率,从而进行计算才能提供精确的结果。我们用141个ER +乳腺癌图像队列评估了我们在核分割任务上的方法,并表明我们平均可以减少大约85%的计算时间。使用这141张图像中12,000个核的专家注释对RADHicaL进行定量评估。与仅使用最高放大倍数的朴素DL方法进行的正面对比,得出以下性能指标:.9407 vs .9854检测率,.8218 vs .8489 F分数,.8061 vs .8364真阳性率和.8822与0.8932的阳性预测值。我们的性能指标与数字病理图像的最新核分割方法相比具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号