首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >A Dual Stream Model for Activity Recognition: Exploiting Residual- CNN with Transfer Learning
【24h】

A Dual Stream Model for Activity Recognition: Exploiting Residual- CNN with Transfer Learning

机译:活动识别双流模型:具有转移学习的遗漏残差

获取原文
获取原文并翻译 | 示例

摘要

Visual content has a protagonist role in this age of data revolution. These days, computer vision research community is fascinated towards application of convolution neural networks and transfer learning for various image and video analysis tasks. Residual connection in CNN can facilitate the training process in the deep networks. This paper investigates and uses deep residual networks with fusion based dual stream pre-trained models for activity recognition from video streams. The architecture is further trained and evaluated using standard video actions benchmarks of UCF-101, HMDB-51 and NTU RGB. Performance of depth-based variants of residual networks is also analysed. The proposed approach not only provides competitive results but also better at exploiting pre-trained model and annotated image data.
机译:视觉内容在这个数据革命时代有一个主角角色。 如今,计算机视觉研究界令人着迷于应用卷积神经网络的应用和各种形象和视频分析任务的转移学习。 CNN中的残余连接可以促进深网络中的培训过程。 本文调查并使用深度剩余网络与基于融合的双流预训练模型,用于视频流的活动识别。 使用UCF-101,HMDB-51和NTU RGB的标准视频动作进行进一步培训和评估该架构。 还分析了剩余网络的深度基础变体的性能。 建议的方法不仅提供竞争结果,而且在利用预先训练的模型和注释图像数据时也更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号