首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >Automatic segmentation of the thumb trapeziometacarpal joint using parametric statistical shape modelling and random forest regression voting
【24h】

Automatic segmentation of the thumb trapeziometacarpal joint using parametric statistical shape modelling and random forest regression voting

机译:使用参数统计形状建模和随机森林回归投票自动分割拇指梯形曲线验谱段

获取原文
获取原文并翻译 | 示例

摘要

We propose an automatic pipeline for creating shape modelling suitable parametric meshes of the trapeziometacarpal (TMC) joint from clinical CT images for the purpose of batch processing and analysis. The method uses 3D random forest regression voting with statistical shape model segmentation. The method was demonstrated in a validation experiment involving 65 CT images, 15 of which were randomly selected to be excluded from the training set for testing. With mean root mean squared errors of 1.066 and 0.632 mm for the first metacarpal and trapezial bones, respectively, and a segmentation time of ~2 min per CT image, the preliminary results showed promise for providing accurate 3D meshes of TMC joint bones for batch processing.
机译:我们提出了一种自动管道,用于从临床CT图像中从临床CT图像创建形状建模的适当参数网格(TMC)接头以进行批量加工和分析。该方法采用3D随机林回归投票与统计形状模型分段。该方法在涉及65ct图像的验证实验中进行说明,其中15个被随机选择,以从训练集中排除用于测试。对于第一个型术术和梯形骨骼的平均均方根误差为1.066和0.632mm,以及每CT图像的〜2分钟的分割时间,初步结果显示了提供用于批量处理的TMC关节骨骼的准确3D网格的承诺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号