首页> 外文期刊>Computer methods in biomechanics and bio >Robust and effective automatic parameter choice for medical image filtering
【24h】

Robust and effective automatic parameter choice for medical image filtering

机译:用于医学图像过滤的强大有效的自动参数选择

获取原文
获取原文并翻译 | 示例

摘要

The analysis of medical image data currently requires the interpretation of a trained and experienced user.The technological advances in imaging machinery and the understanding of disease onset,as well as medical planning,all favour the need for ever more automatic and robust methods for evaluating the health state of a subject.Here,we concentrate on methods for processing medical image data,as currently provided by existing imaging technologies,in particular the effectiveness of automatic image filtering in order to remove noise and improve the sharpness of distinct objects.The filtering approach is based on a partial differential equation,namely the Perona-Malik anisotropic diffusion equation.The approach adopted for terminating the iterative filtering procedure is based on image quality descriptors.In specific,we observe the rate of change of these to infer the transient effects of the filtering process.The entire pipeline is demonstrated to work effectively on different sets of medical image data,including MRI,CTA and CT,both in individual 2-D images in a stack,as well as treating the complete 3D volumetric dataset.
机译:目前,对医学图像数据的分析需要对训练有素且经验丰富的用户进行解释。成像设备的技术进步以及对疾病发作的理解以及医学计划,都促使人们需要更加自动化和强大的方法来评估医学影像。在此,我们重点研究现有成像技术当前提供的医学图像数据的处理方法,尤其是自动图像过滤以消除噪声并提高不同对象的清晰度的有效性。该算法基于偏微分方程,即Perona-Malik各向异性扩散方程。用于终止迭代滤波过程的方法基于图像质量描述符。具体而言,我们观察到它们的变化率以推断出瞬态效应。整个过程被证明可以在不同组的医学上有效地工作堆栈中的单个2-D图像中的MRI图像数据(包括MRI,CTA和CT),以及处理完整的3D体积数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号