首页> 外文期刊>Computer methods in biomechanics and bio >MBO-SVM-based exudate classification in fundus retinal images of diabetic patients
【24h】

MBO-SVM-based exudate classification in fundus retinal images of diabetic patients

机译:基于MBO-SVM的糖尿病患者眼底视网膜图像中的渗出液分类

获取原文
获取原文并翻译 | 示例

摘要

Exudates act as early indications of diabetic retinopathy which may lead to blindness among diabetic patients. The recognition of exudates with a high accuracy and sensitivity is an important and challenging diagnostic task. In the framework of computer assisted diagnosis of diabetic retinopathy, a novel hybrid algorithm using Migrating Bird Optimisation and Support Vector Machine (MB-SVM) classifiers has been proposed in this paper. Initially, the preprocessing is performed with Gaussian filter to eradicate the noisy intensities and background pixels from the given fundus retinal image. We have detected the optic disc by means of Circular Hough Transform and eliminated it using Otsu thresholding algorithm and Gray scale dilation with flat disc structuring. The blood vessels are extracted using thresholding algorithm and then edge detection is performed by using kirsch's template. After heuristic experimentation, it is evident that the performance of SVM classifier can be improved by concurrently optimising its parameters using MBO algorithm. The hybrid supervised model of MB-SVM has been employed to classify the fundus retinal images into normal and abnormal classes. The images that are classified as abnormal will be further categorised into soft, moderate and severe sub-classes. Experimental validation on a publicly available STARE data-set demonstrates the improved performance of the proposed method over existing methods.
机译:渗出液是糖尿病性视网膜病的早期指征,可能导致糖尿病患者失明。高精度和高灵敏度地识别渗出液是一项重要且具有挑战性的诊断任务。在计算机辅助诊断糖尿病性视网膜病变的框架下,提出了一种新的基于迁移鸟优化和支持向量机(MB-SVM)分类器的混合算法。最初,使用高斯滤波器执行预处理,以消除给定眼底视网膜图像中的噪点强度和背景像素。我们已经通过圆形霍夫变换检测到了视盘,并使用Otsu阈值算法和具有平面盘结构的灰度扩展消除了视盘。使用阈值算法提取血管,然后使用柯氏模板进行边缘检测。经过启发式实验,很明显,通过使用MBO算法同时优化其参数,可以提高SVM分类器的性能。 MB-SVM的混合监督模型已被用于将眼底视网膜图像分为正常和异常类别。被分类为异常的图像将被进一步分为软,中和重子类。在公开可用的STARE数据集上进行的实验验证表明,与现有方法相比,该方法的性能有所提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号