首页> 外文期刊>Computer methods in biomechanics and bio >An automatic fusion algorithm for multi-modal medical images
【24h】

An automatic fusion algorithm for multi-modal medical images

机译:一种多模态医学图像的自动融合算法

获取原文
获取原文并翻译 | 示例

摘要

Multi-modal medical image fusion provides an informative and qualitative image, which enhances the accuracy of clinical diagnosis and surgical planning. The most common and effective approaches for medical image fusion involve principal component analysis (PCA), the discrete wavelet transform and the dual-tree complex wavelet transform (DTCWT). These existing algorithms perform fusion in either the spatial or transform domains. In this paper, an advanced fusion algorithm, which combines the DTCWT with PCA, is proposed to perform fusion on several medical imaging modalities. The input images are decomposed by the DTCWT and different fusion rules are applied to combine the coefficients. While PCA is used to fuse the low frequency coefficients, the high frequency coefficients are fused using the maximum fusion rule. The main advantages of the proposed method are the use of both DTCWT and PCA methods together. The DTCWT extracts the salient information about the input images, and then the PCA method is applied to calculate the principal component based on the information on the input images instead of taking only the average value of the low frequency components. The performance of the proposed method was compared with several existing methods. The experimental results obtained reveal that our proposed fusion algorithm performs better than existing schemes both quantitatively and in terms of visual perception.
机译:多模式医学图像融合可提供内容丰富且定性的图像,从而提高临床诊断和手术计划的准确性。医学图像融合的最常用和有效方法包括主成分分析(PCA),离散小波变换和双树复数小波变换(DTCWT)。这些现有算法在空间或变换域中执行融合。本文提出了一种先进的融合算法,该算法将DTCWT与PCA相结合,可以对几种医学成像模式进行融合。输入图像由DTCWT分解,并应用不同的融合规则来组合系数。当使用PCA融合低频系数时,将使用最大融合规则对高频系数进行融合。所提出方法的主要优点是同时使用DTCWT和PCA方法。 DTCWT提取有关输入图像的显着信息,然后应用PCA方法基于输入图像上的信息来计算主成分,而不是仅取低频成分的平均值。将该方法的性能与几种现有方法进行了比较。获得的实验结果表明,我们提出的融合算法在数量上和视觉上都比现有方案表现更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号