首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >General method for automated feature extraction and selection and its application for gender classification and biomechanical knowledge discovery of sex differences in spinal posture during stance and gait
【24h】

General method for automated feature extraction and selection and its application for gender classification and biomechanical knowledge discovery of sex differences in spinal posture during stance and gait

机译:自动特征提取与选择的一般方法及其在姿态和步态中脊柱姿势性别差异的性别分类和生物力学知识发现及其应用

获取原文
获取原文并翻译 | 示例

摘要

Modern technologies enable to capture multiple biomechanical parameters often resulting in relational data. The current work proposes a generally applicable method comprising automated feature extraction, ensemble feature selection and classification to best capture the potentials of the data also for generating new biomechanical knowledge. Its benefits are demonstrated in the concrete biomechanically and medically relevant use case of gender classification based on spinal data for stance and gait. Very good results for accuracy were obtained using gait data. Dynamic movements of the lumbar spine in sagittal and frontal plane and of the pelvis in frontal plane best map gender differences.
机译:现代技术使捕获多种生物力学参数通常导致关系数据。 目前的工作提出了一种普遍适用的方法,包括自动特征提取,集合特征选择和分类,以最佳地捕获数据的潜力,以产生新的生物力学知识。 其益处在基于脊柱和步态的脊柱数据的基础上的生物力学和医学用例的性别分类用例中证明了其益处。 使用步态数据获得非常好的准确度。 腰椎在矢状和正面平面和骨盆中的动态运动,并在正面平面上最好的地图性别差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号