首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >A new training algorithm using artificial neural networks to classify gender-specific dynamic gait patterns
【24h】

A new training algorithm using artificial neural networks to classify gender-specific dynamic gait patterns

机译:一种使用人工神经网络对性别特定的动态步态模式进行分类的新训练算法

获取原文
获取原文并翻译 | 示例

摘要

The aim of this study was to present a new training algorithm using artificial neural networks called multi-objective least absolute shrinkage and selection operator (MOBJ-LASSO) applied to the classification of dynamic gait patterns. The movement pattern is identified by 20 characteristics from the three components of the ground reaction force which are used as input information for the neural networks in gender-specific gait classification. The classification performance between MOBJ-LASSO (97.4%) and multi-objective algorithm (MOBJ) (97.1%) is similar, but the MOBJ-LASSO algorithm achieved more improved results than the MOBJ because it is able to eliminate the inputs and automatically select the parameters of the neural network. Thus, it is an effective tool for data mining using neural networks. From 20 inputs used for training, MOBJ-LASSO selected the first and second peaks of the vertical force and the force peak in the antero-posterior direction as the variables that classify the gait patterns of the different genders.
机译:这项研究的目的是提出一种新的使用人工神经网络的训练算法,该算法称为多目标最小绝对收缩和选择算子(MOBJ-LASSO),用于动态步态模式的分类。通过地面反作用力的三个分量中的20个特征来识别运动模式,这些特征用作性别特定步态分类中神经网络的输入信息。 MOBJ-LASSO(97.4%)和多目标算法(MOBJ)(97.1%)之间的分类性能相似,但是MOBJ-LASSO算法比MOBJ拥有更好的效果,因为它可以消除输入并自动选择神经网络的参数。因此,它是使用神经网络进行数据挖掘的有效工具。 MOBJ-LASSO从用于训练的20个输入中,选择了垂直力的第一个和第二个峰以及前后方向的力峰作为对不同性别步态进行分类的变量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号