首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Guaranteed computable bounds for the exact error in the finite element solution Part I: One-dimensional model problem
【24h】

Guaranteed computable bounds for the exact error in the finite element solution Part I: One-dimensional model problem

机译:有限元解决方案中精确误差的可计算边界第一部分:一维模型问题

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the computation of guaranteed upper and lower bounds for the energy norm of the exact error in the finite element solution, and the exact error in any bounded linear functional. These bounds are constructed by employing approximate solutions of the element residual problems with equilibrated residual loads. The one-dimensional setting is used for the clarity of the ideas. All the arguments employed can be extended to the higher-dimensional case which will be discussed in Part II of this paper. The main result presented here is that the computed bounds are guaranteed for the exact error and not the error with respect to an enriched finite element solution, like the bounds proposed by other investigators and the bounds are guaranteed for any mesh, however coarse it may be. The quality of the bounds can be controlled by employing an inexpensive iterative scheme.
机译:本文讨论了有限元解中精确误差的能量范数以及任何有界线性函数中精确误差的能量范数的保证上界和下界的计算。这些边界是通过采用具有平衡残余载荷的单元残余问题的近似解来构造的。一维设置用于使思想清晰。所采用的所有论点都可以扩展到高维情况,这将在本文的第二部分中讨论。此处给出的主要结果是,对于精确的误差保证了计算的边界,而不是对于富集有限元解决方案而言的误差,就像其他研究者提出的边界一样,对于任何网格,保证的边界都是保证的,但是可能是粗略的。边界的质量可以通过使用便宜的迭代方案来控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号