首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Meshless local boundary integral equation method for simply supported and clamped plates resting on elastic foundation
【24h】

Meshless local boundary integral equation method for simply supported and clamped plates resting on elastic foundation

机译:弹性地基上的简支夹板无网格局部边界积分方程法

获取原文
获取原文并翻译 | 示例

摘要

Simply supported and clamped thin elastic plates resting on a two-parameter foundation are analyzed in the paper. The governing partial differential equation of fourth order for a plate is decomposed into two coupled partial differential equations of second order. One of them is Poisson's equation whereas the other one is Helmholtz's equation. The local boundary integral equation method is used with meshless approximation for both the Poisson and the Helmholtz equation. The moving least square method is employed as the meshless approximation. Independent of the boundary conditions fictitious nodal unknowns used for the approximation of bending moments and deflections are always coupled in the resulting system of algebraic equations. The Winkler foundation model follows from the Pasternak model if the second parameter is equal to zero. Numerical results for a square plate with simply and/or clamped edges are presented to prove the efficiency of the proposed formulation.
机译:本文分析了放置在两参数基础上的简单支撑和夹紧的薄弹性板。板的四阶控制偏微分方程分解为两个耦合的二阶偏微分方程。其中之一是泊松方程,而另一个是亥姆霍兹方程。泊松方程和亥姆霍兹方程均采用局部边界积分方程法和无网格近似法。移动最小二乘法被用作无网格近似。与边界条件无关,用于弯矩和挠度逼近的虚拟节点未知数始终在所得的代数方程组中耦合。如果第二个参数等于零,则Winkler基础模型来自Pasternak模型。给出了具有简单边缘和/或夹紧边缘的正方形板的数值结果,以证明所提出的公式的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号