首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Space-time discontinuous galerkin finite element method with dynamic grid motion for inviscid compressible flows II. efficient flux quadrature
【24h】

Space-time discontinuous galerkin finite element method with dynamic grid motion for inviscid compressible flows II. efficient flux quadrature

机译:具有无粘性可压缩流的具有动态网格运动的时空不连续Galerkin有限元方法II。有效通量正交

获取原文
获取原文并翻译 | 示例

摘要

A new and efficient quadrature rule for the flux integrals arising in the space-time discontinuous Galerkin dis- cretization of the Euler equations in a moving and deforming space-time domain is presented and analyzed. The quadrature rule is a factor three more efficient than the commonly applied quadrature rule and does not affect the local truncation error and stability of the numerical scheme. The local trunction error of the resulting numerical discreti- zation is determined and is shown to be the same as when product Gauss quadrature rules are sued.
机译:提出并分析了在运动和变形时空域中欧拉方程的时空不连续Galerkin离散化中产生的通量积分的一种新的高效正交规则。正交规则的效率比常用的正交规则高三倍,并且不影响局部截断误差和数值方案的稳定性。确定了所得数值离散的局部截断误差,该误差与使用乘积高斯求积规则时的误差相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号