首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A two-scale finite element relaxation analysis of shear bands in non-convex inelastic solids: small-strain theory for standard dissipative materials
【24h】

A two-scale finite element relaxation analysis of shear bands in non-convex inelastic solids: small-strain theory for standard dissipative materials

机译:非凸非弹性固体中剪切带的两尺度有限元松弛分析:标准耗散材料的小应变理论

获取原文
获取原文并翻译 | 示例

摘要

We propose a fundamentally new approach to the treatment of shear band localizations in strain-softening elastic-plastic solids at small strains based on energy minimization principles associated with micro-structure developments. The point of departure is a general internal variable formulation that determines the inelastic response as a standard dissipative medium. Consistent with this type of inelasticity we consider an incremental variational formulation of the local constitutive response where a quasihyperelastic stress potential is obtained from a local constitutive minimization problem with respect to the internal variables. The existence of this variational formulation allows the definition of the material stability of an inelastic solid based on weak convexity conditions of the incremental stress potential in analogy to treatments in finite elasticity. Furthermore, localization phenomena are interpreted as micro-structure developments on multiple scales associated with non-convex incremental stress potentials in analogy to elastic phase decomposition problems. These micro-structures can be resolved by the relaxation of non-convex energy functionals based on a convexification of the stress potential. The relaxed problem provides a well-posed formulation for a mesh-objective analysis of localizations as close as possible to the non-convex original problem. We develop, based on an approximated rank-one convexification of the incremental stress potential, a computational two-scale procedure for a mesh-objective treatment of localization problems. It constitutes a local minimization problem for a relaxed incremental stress potential with just one scalar variable representing the intensity of the micro-shearing of a rank-one laminate aligned to the shear band. This problem is sufficiently robust with regard to applications to large-scale inhomogeneous deformation processes of elastic-plastic solids. The performance of the proposed energy relaxation method is demonstrated for a representative set of numerical simulations of straight and curved shear bands which illustrate the mesh-independence of the results.
机译:我们基于与微结构发展相关的能量最小化原理,提出了一种从根本上新的方法来处理小应变下的应变软化弹塑性固体中的剪切带局部化。出发点是将内部非弹性响应确定为标准耗散介质的常规内部变量公式。与这种类型的非弹性一致,我们考虑局部本构响应的增量变分公式,其中从局部本构最小化问题获得关于内部变量的准超弹性应力潜能。这种变化公式的存在允许根据增量应力潜力的弱凸度条件(类似于有限弹性的处理)来定义非弹性固体的材料稳定性。此外,类似于弹性相分解问题,定位现象被解释为与非凸增量应力势相关的多个尺度的微结构发展。这些微结构可以通过基于应力势凸化的非凸型能量泛函来解决。松弛问题为定位的网格目标分析提供了一个恰当的公式,该分析尽可能接近非凸原始问题。我们基于增量应力势的近似秩一凸化,为网格化目标处理局部化问题开发了一种计算两尺度过程。对于仅具有一个标量变量的松弛增量应力潜力,它就构成了一个局部最小化问题,该标量变量仅表示与剪切带对齐的一级层压板的微剪切强度。关于在弹塑性固体的大规模不均匀变形过程中的应用,该问题足够牢固。对于直线和弯曲剪切带的一组代表性数值模拟,证明了所提出的能量弛豫方法的性能,这些数值模拟说明了结果的网格无关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号