首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation
【24h】

Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation

机译:适用于无网格Mindlin-Reissner板配方的无锁定稳定顺应节点集成

获取原文
获取原文并翻译 | 示例

摘要

The cause of shear locking in Mindlin-Reissner plate formulation is due to the inability of the numerical formulation in representing pure bending mode without producing parasitic shear deformation (lack of Kirchhoff mode). To resolve shear locking in meshfree formulation of Mindlin-Reissner plates, the following two issues are addressed: (1) construction of approximation functions capable of reproducing Kirchhoff modes, and (2) formulation of domain integration of Galerkin weak form capable of producing exact solution under pure bending condition. In this study, we first identify the Kirchhoff mode reproducing conditions (KMRC), and show that the employment of a second order monomial basis in the reproducing kernel or moving least-square approximation of translational and rotational degrees of freedom is an effective means to meet KMRC. Next, the integration constraints that fulfill bending exactness (BE) in the Galerkin meshfree discretization of Mindlin-Reissner plate are derived. A nodal integration with curvature smoothing stabilization that fulfills BE is then formulated for Mindlin-Reissner plate. The curvature smoothing stabilization is introduced in the nodally integrated Galerkin weak form. The resulting meshfree formulation is stable and free of shear locking in the limit of thin plate. Both computational efficiency and accuracy are achieved in the proposed meshfree Mindlin-Reissner plate formulation.
机译:Mindlin-Reissner板公式中剪切锁定的原因是由于数值公式无法表示纯弯曲模式而不产生寄生剪切变形(缺少Kirchhoff模式)。为了解决Mindlin-Reissner板的无网格公式中的剪切锁定问题,解决了以下两个问题:(1)能够再现Kirchhoff模的逼近函数的构造,以及(2)能够产生精确解的Galerkin弱形式的域积分公式在纯弯曲条件下。在这项研究中,我们首先确定了基尔霍夫模式的再现条件(KMRC),并表明在再现内核中采用二阶单项式或平移和旋转自由度的移动最小二乘近似是满足以下要求的有效手段KMRC。接下来,得出在Mindlin-Reissner板的Galerkin无网格离散化中满足弯曲精度(BE)的积分约束。然后为Mindlin-Reissner板配制了满足BE要求的具有曲率平滑稳定度的节点积分。曲率平滑稳定化以结点集成的Galerkin弱形式引入。所得无网状配方稳定且在薄板范围内没有剪切锁定。拟议的无网格Mindlin-Reissner板配方可同时实现计算效率和精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号