首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >High order thin-walled solid finite elements applied to elastic spring-back computations
【24h】

High order thin-walled solid finite elements applied to elastic spring-back computations

机译:高阶薄壁固体有限元应用于弹性回弹计算

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present a new approach for computing elastic spring-back based on a strictly three-dimensional, high order, solid, finite element formulation for curved, thin-walled structures allowing for an anisotropic discretization. In combination with appropriate mesh design, the p-version yields an exponential rate of convergence in the error in energy norm in contrast to low-order elements, which yield only an algebraic rate of convergence. Anisotropic Ansatz spaces based on high order elements lead to very efficient discretizations. The structural behavior of three-dimensional thin-walled continua can be predicted with a similar number of degrees of freedom as in the two-dimensional case, yet significantly more accurately because of the three-dimensional model. We also introduce an approach for the efficient computation of the relevant geometrically nonlinear problem. Furthermore the paper describes the necessary model conversion from a low-order deep drawing simulation to a spring-back computation based on the p-version of the FEM.
机译:在本文中,我们提出了一种新的计算弹性回弹的方法,该方法基于曲面,薄壁结构的严格三维,高阶,实体,有限元公式,允许各向异性离散化。结合适当的网格设计,与低阶元素相反,p版本在能量范数误差中产生指数收敛速度,而低阶元素仅产生代数收敛速度。基于高阶元素的各向异性Ansatz空间导致非常有效的离散化。三维薄壁连续体的结构行为可以用与二维情况相似的自由度来预测,但由于三维模型,因此可以显着更准确地预测。我们还介绍了一种有效计算相关几何非线性问题的方法。此外,本文描述了必要的模型转换,从低阶深冲仿真到基于FEM的p版本的回弹计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号