首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Numerical simulations of incompressible aerodynamic flows using viscous/inviscid interaction procedures
【24h】

Numerical simulations of incompressible aerodynamic flows using viscous/inviscid interaction procedures

机译:粘性/非粘性相互作用过程的不可压缩空气动力学数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Steady two-dimensional laminar incompressible flows over airfoils are simulated using a Helmholtz velocity decomposition where the velocity vector is split into a gradient of a potential and a correction representing the rotational components. For most aerodynamic flows, the rotational components of the velocity vanish outside the boundary layer and the wake region. Therefore, the near and far velocity fields can be represented by a potential function and the pressure can be obtained there from Bernoulli's law. In the viscous flow region, the momentum equations are integrated to calculate the rotational velocity components. Conservation of mass leads to a Poisson's equation for the potential function, where the right hand side, the forcing function, is given in terms of the divergence of the rotational velocity component. The latter represents a distribution of sources in the viscous layer and results in a displacement effect on the outside potential field. In this formulation, the pressure in the momentum equations does not play an essential role since the conservation of mass is imposed through the augmented potential equation. After the velocity field is obtained, the correct pressure distribution in the viscous flow region is calculated by integrating the normal momentum equation. Numerical results are presented to confirm the validity and the merits of the present formulation. Solving a Poisson's equation for the potential function, rather than the pressure as in standard methods for solving Navier-Stokes equations, is the main advantage since the calculations of the rotational velocity components are restricted to the viscous flow region only. Standard numerical methods are applicable to the present formulation including multigrid acceleration techniques for the augmented potential equation.
机译:使用亥姆霍兹速度分解模拟机翼上的二维稳定层流不可压缩流,其中速度矢量被分解为电位梯度和代表旋转分量的校正。对于大多数空气动力流,速度的旋转分量在边界层和尾流区域之外消失。因此,近和远速度场可以由势函数表示,并且压力可以从伯努利定律那里获得。在粘性流动区域中,动量方程被积分以计算旋转速度分量。质量守恒导致势函数的泊松方程,其中右手侧,即强迫函数,根据转速分量的发散给出。后者表示源在粘性层中的分布,并导致对外部势场的位移效应。在这个公式中,动量方程中的压力没有起重要作用,因为质量守恒是通过增强势方程来实现的。在获得速度场之后,通过对法向动量方程进行积分,可以计算出粘性流动区域中的正确压力分布。给出数值结果以证实本制剂的有效性和优点。求解势函数的泊松方程,而不是像解决Navier-Stokes方程的标准方法那样求解压力,是主要优点,因为旋转速度分量的计算仅限于粘性流动区域。标准数值方法适用于当前公式,包括用于增强电势方程的多网格加速技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号