首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An anisotropic viscoelastic fibre-matrix model at finite strains: Continuum formulation and computational aspects
【24h】

An anisotropic viscoelastic fibre-matrix model at finite strains: Continuum formulation and computational aspects

机译:有限应变下的各向异性粘弹性纤维矩阵模型:连续体公式和计算方面

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a fully three-dimensional constitutive model for anisotropic viscoelasticity suitable for the macroscopic description of fibre reinforced composites that experience finite strains. An essential feature of the model is that the matrix and the fibres are treated separately allowing then as many bundles of fibres as desired. Moreover, the relaxation and/or creep response is based on the multiplicative viscoelastic split of the deformation gradient combined with the assumption of viscoelastic potentials for each compound. Here the composite is thought to be the superposition of an isotropic matrix material and further one-dimensional continua, each of them representing one family of fibres. The deformation gradient and its multiplicative decomposition apply to all the continua linking them implicitly. The global anisotropic response is obtained by an assembly of all the contributions. Constitutive models for orthotropic and transversely isotropic materials are included as special cases. It is shown how the continuum thermodynamics is crucial in setting the correct forms for the constitutive and evolution equations. For the algorithmic design within the context of the finite element method, the numerical effort is of the order of that devoted for isotropic computations. In fact, only a single scalar-valued resolution procedure is added for each fibre bundle. The algorithmic tangent moduli are derived for each compound and their assembly leads to consistent viscoelastic tangent modulus which is suitable for a quadratic rate of convergence when the Newton-Raphson iterative scheme is employed. The numerical efficiency of the model is illustrated through a set of representative simulations.
机译:本文提出了各向异性粘弹性的完整三维本构模型,适合宏观描述纤维增强复合材料的有限应变。该模型的基本特征是将基质和纤维分开处理,然后允许任意数量的纤维束。此外,松弛和/或蠕变响应是基于变形梯度的乘法粘弹性分裂,并结合每种化合物的粘弹性势的假设。在这里,复合材料被认为是各向同性基体材料与其他一维连续体的叠加,它们中的每一个都代表一个纤维家族。变形梯度及其乘性分解适用于所有隐式链接它们的连续体。全局各向异性响应是通过所有贡献的集合获得的。正交各向异性和横向各向同性材料的本构模型作为特殊情况包括在内。它显示了连续热力学在为本构方程和演化方程设定正确形式时如何至关重要。对于有限元方法范围内的算法设计,数值工作量与各向同性计算的数量级相同。实际上,每个光纤束仅添加一个标量值的分辨率过程。推导了每种化合物的算法切线模量,并且它们的组装导致一致的粘弹性切线模量,适用于采用牛顿-拉夫森迭代方案的二次收敛速率。通过一组代表性的仿真来说明模型的数值效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号