首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Analysis of thick plates by using a higher-order shear and normal deformable plate theory and MLPG method with radial basis functions
【24h】

Analysis of thick plates by using a higher-order shear and normal deformable plate theory and MLPG method with radial basis functions

机译:使用高阶剪切和法向变形板理论以及具有径向基函数的MLPG方法对厚板进行分析

获取原文
获取原文并翻译 | 示例

摘要

Infinitesimal deformations of a homogeneous and isotropic thick elastic plate have been analyzed by using a meshless local Petrov-Galerkin (MLPG) method and a higher-order shear and normal deformable plate theory (HONSDPT). Radial basis functions (RBF) are employed for constructing trial solutions, while a spline function is used as the weight function over a local subdomain. The present method uses a number of randomly distributed nodes in the domain and is truly meshless. Two types of RBFs, i.e. multiquadrics (MQ) and thin plate splines (TPS), are employed and effects of their shape parameters on the quality of the computed solution are examined for deformations of thick plates under different boundary conditions. It is found that the present MLPG formulations give results very close to those obtained by other researchers. A benefit of using RBFs is that no special treatment is needed to impose the essential boundary conditions, which substantially reduces the computational cost.
机译:通过使用无网格局部Petrov-Galerkin(MLPG)方法,高阶剪切和法向可变形板理论(HONSDPT),分析了均质各向同性厚弹性板的极小变形。径向基函数(RBF)用于构建试验解,而样条函数用作局部子域上的权重函数。本方法使用域中的许多随机分布的节点,并且实际上是无网格的。使用了两种类型的RBF,即多二次方(MQ)和薄板样条(TPS),并检查了其形状参数对计算解质量的影响,以了解不同边界条件下厚板的变形。发现本发明的MLPG制剂给出的结果非常接近于其他研究者获得的结果。使用RBF的好处在于,不需要特殊处理就可以施加基本边界条件,从而大大降低了计算成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号