首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A class of parallel two-level nonlinear Schwarz preconditioned inexact Newton algorithms
【24h】

A class of parallel two-level nonlinear Schwarz preconditioned inexact Newton algorithms

机译:一类并行两级非线性Schwarz预处理不精确牛顿算法

获取原文
获取原文并翻译 | 示例

摘要

We propose and test a new class of two-level nonlinear additive Schwarz preconditioned inexact Newton algorithms (ASPIN). The two-level ASPIN combines a local nonlinear additive Schwarz preconditioner and a global linear coarse preconditioner. This approach is more attractive than the two-level method introduced in [X.-C. Cai, D.E. Keyes, L. Marcinkowski, Nonlinear additive Schwarz precon-ditioners and applications in computational fluid dynamics, Int. J. Numer. Methods Fluids, 40 (2002), 1463-1470], which is nonlinear on both levels. Since the coarse part of the global function evaluation requires only the solution of a linear coarse system rather than a nonlinear coarse system derived from the discretization of original partial differential equations, the overall computational cost is reduced considerably. Our parallel numerical results based on an incompressible lid-driven flow problem show that the new two-level ASPIN is quite scalable with respect to the number of processors and the fine mesh size when the coarse mesh size is fine enough, and in addition the convergence is not sensitive to the Reynolds numbers.
机译:我们提出并测试了一类新的两级非线性加性Schwarz预处理不精确牛顿算法(ASPIN)。两级ASPIN组合了局部非线性加性Schwarz预调节器和全局线性粗略预处理器。这种方法比在[X.-C.]中引入的两级方法更具吸引力。蔡德D Keyes,L。Marcinkowski,非线性加性Schwarz预调节器及其在计算流体动力学中的应用,国际。 J.纽默方法流体,40(2002),1463-1470],在两个水平上都是非线性的。由于全局函数评估的粗略部分只需要线性粗略系统的求解,而不需要从原始偏微分方程离散化而来的非线性粗略系统的求解,因此总体计算成本大大降低了。我们基于不可压缩盖驱动流动问题的并行数值结果表明,当粗糙网格尺寸足够精细时,新的两级ASPIN在处理器数量和精细网格尺寸方面具有相当的可扩展性,此外还具有收敛性对雷诺数不敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号