首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Hexahedral Volume Coordinate Method (hvcm) And Improvements On 3d Wilson Hexahedral Element
【24h】

Hexahedral Volume Coordinate Method (hvcm) And Improvements On 3d Wilson Hexahedral Element

机译:六面体体积坐标法(hvcm)及其对3d Wilson六面体元素的改进

获取原文
获取原文并翻译 | 示例

摘要

A new volume coordinate method for developing 3D hexahedral elements, called hexahedral volume coordinate method (HVCM), is systematically established in this paper: (i) several characteristic parameters of a hexahedron are defined and the degeneration conditions under which a hexahedron degenerates into other special polyhedrons are given; (ii) the volume coordinates (L_1, L_2, L_3, L_4, L_5, L_6) of any point within a convex hexahedron are defined; (iii) transformation relations between the volume coordinates and the Cartesian or isoparametric coordinates are presented; (iv) the differential formulas for volume coordinates in hexahedral elements are given. This new coordinate system can keep not only the advantages of local natural coordinate system, but also a linear relation with the Cartesian coordinate system. Then, for checking the validity of the new HVCM, it is used to formulate three new incompatible eight-node hexahedral elements, HVCC8, HVCC8-ES and HVCC8-EM, by a similar procedure of famous Wilson's incompatible mode. Numerical results show that the present elements exhibit much better performance than that of conventional isoparametric elements in most distorted mesh cases, especially for MacNeal's thin beam problem. It demonstrates that the new HVCM is a powerful tool for constructing high-performance hexahedral finite element models.
机译:本文系统地建立了一种新的用于开发3D六面体单元的体积坐标方法,称为六面体体积坐标方法(HVCM):(i)定义了六面体的几个特征参数,以及六面体退化为其他特殊条件的退化条件给出了多面体; (ii)定义凸六面体内任何点的体积坐标(L_1,L_2,L_3,L_4,L_5,L_6); (iii)给出了体积坐标与笛卡尔坐标或等参坐标之间的转换关系; (iv)给出了六面体单元中体积坐标的微分公式。这种新的坐标系不仅可以保留局部自然坐标系的优势,而且可以保持与笛卡尔坐标系的线性关系。然后,为了检验新HVCM的有效性,通过类似于著名的Wilson的不兼容模式的程序,用它来制定三个新的不兼容的八节点六面体元素HVCC8,HVCC8-ES和HVCC8-EM。数值结果表明,在大多数变形的网格情况下,尤其是对于麦克尼尔的细光束问题,当前单元的性能要优于常规等参单元。它表明,新的HVCM是构建高性能六面体有限元模型的强大工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号