...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Quantum Dot-dna Interaction: Computational Issues And Preliminary Insights On Use Of Quantum Dots As Biosensors
【24h】

Quantum Dot-dna Interaction: Computational Issues And Preliminary Insights On Use Of Quantum Dots As Biosensors

机译:量子点-dna相互作用:使用量子点作为生物传感器的计算问题和初步见解。

获取原文
获取原文并翻译 | 示例

摘要

In recent years, quantum dots have generated enormous interest from the life sciences community due to their (largely) untapped potential in biomedical applications; particularly in bio-labeling and sensing. While empirical work already exists on the use of quantum dots as bio-labels, their development as biosensors requires a thorough scientific understanding of their interactions with conjugated biomolecules that together 'sense' the molecule of interest. Some recent experiments have claimed a marked variation in the luminescence of cadmium selenide quantum dots conjugated to macromolecules linked to bacteria. The origin of this large shift in luminescence of the quantum dot (and thus by implication, the band gap) appears to be poorly understood. The knowledge of the exact nature of the interaction causing the 'shift' may hold the key to designing better biosensors. The objective of the present work is to address the aforementioned interaction and to that end, we have chosen a prototypical model consisting of a capped cadmium selenide quantum dot interacting with a DNA molecule. This problem is inherently multiscale due to the relatively large number of atoms, complex nature of the interactions involved in the quantum dot-DNA system and the disparate length scales present in the problem requiring a combination of methods ranging from approaches that utilize empirical molecular mechanics force fields on one hand and ab initio electronic structure (based on density functional theory) calculations on the other hand. We discuss several modeling issues that arise in the simulations of this complex problem and present some preliminary insights. Our initial results indicate a wavelength shift of roughly 19 nm in the spectrum of a 1.1 nm sized dot upon interaction with a typical DNA molecule. However, upon increase of quantum dot size, the shift decreases and thus suggests a re-examination of singular experimental data available in the literature. Our results, which are performed in vacuum rather than a solvent, may be considered as an upper bound to the true interaction.
机译:近年来,由于量子点在生物医学领域的巨大潜力,生命科学界对此产生了极大的兴趣。特别是在生物标记和传感方面。尽管已经有关于使用量子点作为生物标记物的经验性工作,但将其作为生物传感器的发展需要对它们与共轭“感知”目标分子的共轭生物分子之间相互作用的透彻科学理解。最近的一些实验声称与连接到细菌的大分子共轭的硒化镉量子点的发光存在显着变化。量子点发光的这种大位移的根源(因此也就意味着带隙)似乎了解得很少。引起“转移”的相互作用的确切性质的知识可能是设计更好的生物传感器的关键。本工作的目的是解决上述相互作用,为此,我们选择了一个原型模型,该模型由与DNA分子相互作用的加帽硒化镉量子点组成。由于相对大量的原子,量子点-DNA系统中涉及的相互作用的复杂性以及该问题中存在的不同长度尺度,因此该问题本质上是多尺度的,需要结合多种方法,这些方法的范围包括利用经验分子力学力的方法一方面,从头开始计算电子结构,另一方面从头计算电子结构(基于密度泛函理论)。我们讨论了在模拟此复杂问题时出现的几个建模问题,并提供了一些初步见解。我们的初步结果表明,与典型的DNA分子相互作用时,在1.1 nm大小的点的光谱中,波长偏移约为19 nm。但是,随着量子点尺寸的增加,位移减小,因此建议重新检查文献中可用的单一实验数据。我们的结果是在真空而不是溶剂中进行的,可以认为是真正相互作用的上限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号