...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >NASA Langley's approach to the Sandia's structural dynamics challenge problem
【24h】

NASA Langley's approach to the Sandia's structural dynamics challenge problem

机译:美国宇航局兰利对桑迪亚结构动力学挑战的方法

获取原文
获取原文并翻译 | 示例
           

摘要

The objective of this challenge is to develop a data-based probabilistic model of uncertainty to predict the acceleration response of subsystems (payloads) by themselves and while coupled to a primary (target) system. Although deterministic analyses of this type are routinely performed and representative of issues faced in real-world system design and integration, there are still several key technical challenges that must be addressed when analyzing the uncertainties of interconnected systems. For example, one key technical challenge is related to the fact that there is limited data on the target configurations. Also, while multiple data sets from experiments conducted at the subsystem level are provided, samples sizes are not sufficient to compute high confidence statistics. Moreover, in this challenge problem, additional constraints, in the form of ground rules, have been added. One such constraint is that mathematical models of the subsystem are limited to linear approximations of the nonlinear physics of the problem at hand. Also, participants are constrained to use these subsystem models and the multiple data sets to make predictions about the target system response under completely different forcing functions. Initially, our approach involved the screening of several different methods to arrive at the three presented herein. The first one is based on a transformation of the structural dynamic data in the modal domain to an orthogonal space where the mean and covariance of the data are matched. The other two approaches worked solutions in physical space where the uncertain parameter set is made of masses, stiffnessess, and damping coefficients; one matches the confidence intervals of low order moments of the statistics via optimization while the second one uses a Kernel density estimation approach. The paper will touch on the approaches, lessons learned, validation metrics and their comparison, data quantity restriction, and assumptions/limitations of each approach.
机译:这项挑战的目的是建立一个基于数据的不确定性概率模型,以预测子系统(有效载荷)自身以及与主(目标)系统耦合时的加速度响应。尽管通常进行这种类型的确定性分析,并代表实际系统设计和集成中面临的问题,但是在分析互连系统的不确定性时,仍然必须解决几个关键的技术挑战。例如,一项关键技术挑战与以下事实有关:目标配置的数据有限。同样,虽然提供了在子系统级别进行的实验的多个数据集,但样本大小不足以计算高置信度统计数据。此外,在这个挑战性问题中,以基本规则的形式添加了其他约束。这样的约束之一是子系统的数学模型仅限于手头问题的非线性物理学的线性近似。而且,参与者必须使用这些子系统模型和多个数据集来对完全不同的强制功能下的目标系统响应做出预测。最初,我们的方法涉及筛选几种不同的方法以得出本文介绍的三种方法。第一个基于模态域中结构动态数据到正交空间的转换,在正交空间中数据的均值和协方差匹配。另两种方法在物理空间中解决了问题,在物理空间中不确定参数集由质量,刚度和阻尼系数组成。一种通过优化匹配统计量低阶矩的置信区间,而第二种则使用核密度估计方法。本文将探讨方法,经验教训,验证指标及其比较,数据量限制以及每种方法的假设/限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号