首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An approach to the Sandia workshop static frame challenge problem: A combination of elementary probabilistic, fuzzy set, and worst scenario tools
【24h】

An approach to the Sandia workshop static frame challenge problem: A combination of elementary probabilistic, fuzzy set, and worst scenario tools

机译:桑迪亚研讨会静态框架挑战问题的一种方法:基本概率,模糊集和最坏情况工具的组合

获取原文
获取原文并翻译 | 示例

摘要

A model static frame problem with uncertain input data is considered. The Young modulus of the frame material is known only through a limited number of measurements of its local and effective values. In the loaded frame, the displacement w at a given point is to be predicted. To tackle the uncertainty in the displacement magnitude, a set F of conservative Young modulus behavior (YMB) models is constituted and the mean and the variance of w are inferred for each YMB model belonging to F. Moreover, the degree of possibility of each YMB model is assessed by a weight (membership) function v derived from measured data. The probability of w exceeding a given tolerance is inferred in each YMB model and then weighted by v. To address the prediction problem in accordance with the worst scenario approach, the maximum is identified in the weighted probabilities. The analysis is based on elementary probabilistic tools as well as on the exploitation of computer algebra and numerical methods. The results are presented in numerous graphs.
机译:考虑具有不确定输入数据的模型静态框架问题。框架材料的杨氏模量仅通过对其局部和有效值的有限次数的测量才知道。在加载的框架中,要预测给定点的位移w。为了解决位移量的不确定性,构造了一组保守的杨氏模量行为(YMB)模型,并推导出每个属于F的YMB模型的w的均值和方差。此外,每个YMB的可能性程度通过从测量数据得出的权重(成员)函数v评估模型。在每个YMB模型中推断w超过给定公差的概率,然后用v加权。为解决最坏情况下的预测问题,在加权概率中确定最大值。该分析基于基本的概率工具以及计算机代数和数值方法的开发。结果以大量图形表示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号