首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >n-Widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method
【24h】

n-Widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method

机译:等宽有限元方法的k版本的n宽度,sup-infs和最优比

获取原文
获取原文并翻译 | 示例

摘要

We begin the mathematical study of the k-method utilizing the theory of Kolmogorov n-widths. The k-method is a finite element technique where spline basis functions of higher-order continuity are employed. It is a fundamental feature of the new field of isogeometric analysis. In previous works, it has been shown that using the k-method has many advantages over the classical finite element method in application areas such as structural dynamics, wave propagation, and turbulence.rnThe Kolmogorov n-width and sup-inf were introduced as tools to assess the effectiveness of approximating functions. In this paper, we investigate the approximation properties of the fc-method with these tools. Following a review of theoretical results, we conduct a numerical study in which we compute the n-width and sup-inf for a number of one-dimensional cases. This study sheds further light on the approximation properties of the k-method. We finish this paper with a comparison study of the k-method and the classical finite element method and an analysis of the robustness of polynomial approximation.
机译:我们开始使用Kolmogorov n宽度理论对k方法进行数学研究。 k方法是一种有限元技术,其中采用了高阶连续性的样条基函数。这是等几何分析新领域的基本特征。在以前的工作中,已经表明,在结构动力学,波传播和湍流等应用领域,使用k方法比经典的有限元方法具有许多优势。rn介绍了Kolmogorov n宽度和sup-inf作为工具评估近似函数的有效性。在本文中,我们使用这些工具研究了fc方法的近似性质。在对理论结果进行回顾之后,我们进行了数值研究,其中我们计算了许多一维情况的n宽度和sup-inf。这项研究进一步阐明了k方法的近似性质。本文以k方法与经典有限元方法的比较研究以及多项式逼近的鲁棒性分析为结尾。

著录项

  • 来源
  • 作者单位

    Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th Street, 1 University Station C0200, Austin, TX 78712, USA;

    Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0085 La Jolla, CA 92093, USA;

    Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th Street, 1 University Station C0200, Austin, TX 78712, USA;

    Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th Street, 1 University Station C0200, Austin, TX 78712, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    finite element methods; isogeometric analysis; k-method; approximation; n-widths; sup-inf;

    机译:有限元方法等几何分析k方法近似;n宽度;超级;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号