首页> 外文学位 >k-version of finite element method for polymer flows using Giesekus constitutive model.
【24h】

k-version of finite element method for polymer flows using Giesekus constitutive model.

机译:使用Giesekus本构模型的聚合物流动有限元方法的k版本。

获取原文
获取原文并翻译 | 示例

摘要

One of the fundamental differences in the polymer flows compared to Newtonian or generalized Newtonian flow is the presence of elasticity due to polymer in addition to the viscosities of the solvent and the polymer. While for Newtonian and generalized Newtonian fluids viscous stresses are explicitly defined in terms of strain rates and transport properties, and thus can be completely eliminated from the governing differential equations (GDEs) by their substitution in the momentum and energy equations. This however is not possible in the case of polymer flows.; The mathematical models for polymer flows are derived using conservation laws in which many different choices of stresses as dependent variables are possible. In the published works it is generally accepted that GDEs in elastic stresses are meritorious in Galerkin method with weak form over other choices. However, regardless of the choices of stresses the GDEs always remain non-linear and hence, the Galerkin method with weak form yields variationally inconsistent integral forms for all possible choices of the stresses. Thus, one of the investigation in this study is to show the influence of the choices of stresses in the mathematical models on the computational processes when the integral forms are variationally consistent (VC).; Another significant issue in polymer flows is the issue of numerical solutions for higher Deborah numbers. For a given fluid and a given geometric configuration the choices of length (Lo) and relaxation time (lambda) are generally fixed and hence high Deborah number flows are invariably associated with higher flow rates and thus higher velocities. In many standard model problems such as couette flow, lid driven cavity, expansion, contraction etc, severe deborah number (De) limitations are reported in the computational processes based on Galerkin method with weak form while there appears to be no such apparent limitation in the constitutive model such as Giesekus model. In this work we investigate if such Deborah number limitations exist in hpk framework or are such limitations a consequence of VIC integral form and C0 local approximations. The work presented here considers boundary value problems (BVPs) as well as initial value problems (IVPs) using Giesekus constitutive model.; For BVPs, numerical studies are presented for (i) One dimensional fully developed flow between parallel plates; (ii) developing flow between parallel plates and (iii) lid driven square cavity. In case of one dimensional fully developed flow solutions are reported for Deborah numbers up to 6514.52 and there does not seem to be any limit of deborah number in 'hpk ' framework. Solutions are reported for developing flow between parallel plates upto deborah number of 20.13. Excellent agreement is obtained between for one dimensional fully developed flow between parallel plates and developing flow between parallel plates. For lid driven square cavity, mathematical idealization of the physics at the corners where stationary walls intersect the lid is presented. It is shown that in the hpk framework when hd → 0 and k → infinity, physics is approached where the lid meets the stationary vertical walls. Various numerical studies are presented upto deborah number of 2.4 for hd = 0.1 and 0.05. The converged solutions independent of h, p and k are reported. The convergence of the Newton's method with line search slows down for high deborah numbers primarily due to the fact that the stokes flow is not in the close neighborhood of the solution sought. This problem is overcome by using the solution at lower deborah number as the initial solution for high deborah number i.e. continuation in Deborah number.; The numerical solutions of boundary value problem (BVP) and initial value problem (IVP) arising in Fiber spinning of polymers are presented using Least squares and space-time least squares finite element process in H k,p scalar product spaces. The parameter k, the order of t
机译:与牛顿流或广义牛顿流相比,聚合物流的根本区别之一是除了溶剂和聚合物的粘度外,还由于聚合物而存在弹性。对于牛顿流体和广义牛顿流体,粘滞应力是根据应变率和输运性质明确定义的,因此可以通过将其代入动量方程和能量方程而从控制微分方程(GDE)中完全消除。但是,这在聚合物流动的情况下是不可能的。聚合物流动的数学模型是使用守恒定律推导出来的,其中可以选择多种不同的应力作为因变量。在已发表的著作中,人们普遍接受弹性应力下的GDE在Galerkin方法中是有功的,其形式较其他选择弱。但是,不管应力的选择如何,GDE始终保持非线性,因此,对于所有可能的应力选择,具有弱形式的Galerkin方法会产生不一致的积分形式。因此,这项研究的一项研究是,当积分形式是变化一致的(VC)时,表明数学模型中应力选择对计算过程的影响。聚合物流动中的另一个重要问题是较高Deborah数的数值解的问题。对于给定的流体和给定的几何构型,长度(Lo)和弛豫时间(λ)的选择通常是固定的,因此,高Deborah数流始终与较高的流速和较高的速度相关。在许多标准模型问题中,例如couette流动,盖子驱动的空腔,膨胀,收缩等,在基于Galerkin方法的计算过程中报告了Deborah数(De)严重限制,形式很弱,而在模型中似乎没有明显的限制。本构模型,例如Giesekus模型。在这项工作中,我们研究了hpk框架中是否存在这样的Deborah数限制,或者这些限制是VIC积分形式和C0局部逼近的结果。这里介绍的工作使用Giesekus本构模型考虑了边值问题(BVP)和初值问题(IVP)。对于BVP,提出了以下数值研究:(i)平行板之间的一维完全展开的流动; (ii)在平行板之间形成流动,以及(iii)盖驱动的方形腔。在一维的情况下,据报道Deborah数高达6514.52的完全开发的流量解决方案,并且在“ hpk”框架中似乎对deborah数没有任何限制。据报道,解决方案在平行板之间发展流动,直到德博拉数达到20.13。在平行板之间的一维完全展开的流动与平行板之间的展开的流动之间获得了极好的一致性。对于盖子驱动的方腔,提出了固定壁与盖子相交的拐角处的物理学的数学理想化。结果表明,在hpk框架中,当hd→0和k→无穷大时,接近盖子与静止的垂直壁的位置接近物理。对于hd = 0.1和0.05,提出了高达2.4的deborah数的各种数值研究。报告了独立于h,p和k的收敛解。对于高deborah数,牛顿方法与线搜索的收敛速度变慢,这主要是由于斯托克斯流不在所寻求的解决方案的附近。通过使用较低德博拉数的解作为高德博拉数的初始解即德博拉数的延续的解决方案来克服该问题。利用最小二乘和时空最小二乘有限元方法,在H k,p标量积空间中,提出了聚合物纤维纺丝中出现的边值问题(BVP)和初值问题(IVP)的数值解。参数k,t的阶数

著录项

  • 作者

    Deshpande, Kedar Mukund.;

  • 作者单位

    University of Kansas.$bMechanical Engineering.;

  • 授予单位 University of Kansas.$bMechanical Engineering.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 230 p.
  • 总页数 230
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号