首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes
【24h】

A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes

机译:基于节点的平滑有限元方法(NS-FEM),用于使用三角和四面体网格对固体进行粘弹塑性分析的上限解

获取原文
获取原文并翻译 | 示例

摘要

A node-based smoothed finite element method (NS-FEM) was recently proposed for the solid mechanics problems. In the NS-FEM, the system stiffness matrix is computed using the smoothed strains over the smoothing domains associated with nodes of element mesh. In this paper, the NS-FEM is further extended to more complicated visco-elastoplastic analyses of 2D and 3D solids using triangular and tetrahedral meshes, respectively. The material behavior includes perfect visco-elastoplasticity and visco-elastoplastic-ity with isotropic hardening and linear kinematic hardening. A dual formulation for the NS-FEM with displacements and stresses as the main variables is performed. The von-Mises yield function and the Pra-ndtl-Reuss flow rule are used. In the numerical procedure, however, the stress variables are eliminated and the problem becomes only displacement-dependent. The numerical results show that the NS-FEM has higher computational cost than the FEM. However the NS-FEM is much more accurate than the FEM, and hence the NS-FEM is more efficient than the FEM. It is also observed from the numerical results that the NS-FEM possesses the upper bound property which is very meaningful for the visco-elastoplastic analyses which almost have not got the analytical solutions. This suggests that we can use two models, NS-FEM and FEM, to bound the solution, and can even estimate the global relative error of numerical solutions.
机译:最近提出了一种基于节点的光滑有限元方法(NS-FEM)来解决固体力学问题。在NS-FEM中,系统刚度矩阵是使用与单元网格节点关联的平滑域上的平滑应变来计算的。在本文中,NS-FEM进一步扩展到分别使用三角形和四面体网格对2D和3D实体进行更复杂的粘弹塑性分析。材料行为包括具有各向同性硬化和线性运动硬化的完美的粘弹塑性和粘弹塑性。以位移和应力为主要变量,对NS-FEM进行了双重表述。使用了von-Mises屈服函数和Pra-ndtl-Reuss流动规则。但是,在数值过程中,消除了应力变量,问题仅取决于位移。数值结果表明,NS-FEM的计算成本高于FEM。但是,NS-FEM比FEM准确得多,因此,NS-FEM比FEM更有效。从数值结果还可以看出,NS-FEM具有上限特性,这对于几乎没有解析解的粘弹塑性分析非常有意义。这表明我们可以使用两个模型NS-FEM和FEM来界定解,甚至可以估计数值解的整体相对误差。

著录项

  • 来源
    《Computer Methods in Applied Mechanics and Engineering》 |2010年第48期|p.3005-3027|共23页
  • 作者单位

    Department of Mechanics, Faculty of Mathematics and Computer Science, University of Science, Vietnam National University - HCM, 227 Nguyen Van Cu, District 5, Hochiminh City, Viet Nam,Division of Computational Mechanics, Faculty of Civil Engineering, Ton Duc Thang University, 98 Ngo Tat To, Binh Thanh District, Ho Chi Minh City, Vietnam;

    Department of Mechanics, Faculty of Mathematics and Computer Science, University of Science, Vietnam National University - HCM, 227 Nguyen Van Cu, District 5, Hochiminh City, Viet Nam;

    Institute of Structural Mechanics (ISM), Bauhaus-University Weimar, 1599423 Weimar, Germany;

    Department of Mechanics, Faculty of Mathematics and Computer Science, University of Science, Vietnam National University - HCM, 227 Nguyen Van Cu, District 5, Hochiminh City, Viet Nam,Division of Computational Mechanics, Faculty of Civil Engineering, Ton Duc Thang University, 98 Ngo Tat To, Binh Thanh District, Ho Chi Minh City, Vietnam;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    numerical methods; meshfree methods; node-based smoothed finite element; method (NS-FEM); finite element method (FEM); upper bound; visco-elastoplastic analyses;

    机译:数值方法无网格方法;基于节点的平滑有限元;方法(NS-FEM);有限元法(FEM);上限粘弹塑性分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号