首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations
【24h】

A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations

机译:通过适当的广义分解来简化先验模型,以求解时间相关的偏微分方程

获取原文
获取原文并翻译 | 示例

摘要

Over the past years, model reduction techniques have become a necessary path for the reduction of computational requirements in the numerical simulation of complex models. A family of a priori model reduction techniques, called Proper Generalized Decomposition (PGD) methods, are receiving a growing interest. These methods rely on the a priori construction of separated variables representations of the solution of models defined in tensor product spaces. They can be interpreted as generalizations of Proper Orthogonal Decomposition (POD) for the a priori construction of such separated representations. In this paper, we introduce and study different definitions of PGD for the solution of time-dependent partial differential equations. We review classical definitions of PGD based on Galerkin or Minimal Residual formulations and we propose and discuss several improvements for these classical definitions. We give an interpretation of optimal decompositions as the solution of pseudo-eigenproblems. We also introduce a new definition of PGD, called Minimax PGD, which can be interpreted as a Petrov-Galerkin model reduction technique, where test and trial reduced basis functions are related by an adjoint problem. This new definition improves convergence properties of separated representations with respect to a chosen metric. It coincides with a classical POD for degenerate time-dependent partial differential equations. For the numerical construction of each PGD, we propose algorithms inspired from the solution of eigen-problems. Several numerical examples illustrate and compare the different definitions of PGD on transient advection-diffusion-reaction equations.
机译:在过去的几年中,模型简化技术已成为减少复杂模型的数值模拟中的计算要求的必要途径。称为适当的广义分解(PGD)方法的一系列先验模型简化技术受到越来越多的关注。这些方法依赖于张量积空间中定义的模型解的分离变量表示的先验构造。对于此类分离表示的先验构造,可以将它们解释为适当正交分解(POD)的概括。在本文中,我们介绍并研究了PGD的不同定义,以求解与时间有关的偏微分方程。我们回顾了基于Galerkin或最小残差公式的PGD的经典定义,并提出并讨论了这些经典定义的一些改进。我们将最优分解解释为伪本征问题的解决方案。我们还引入了一种新的PGD定义,称为Minimax PGD,可以将其解释为Petrov-Galerkin模型简化技术,其中测试和试验的简化基函数与伴随问题相关。这个新定义改善了相对于所选度量的分离表示形式的收敛性。它与退化时间相关的偏微分方程的经典POD吻合。对于每个PGD的数值构造,我们提出了受本征问题解决方案启发的算法。几个数值示例说明并比较了瞬态对流扩散反应方程中PGD的不同定义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号