首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids
【24h】

A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids

机译:自适应网格上可压缩黏性流的严格保守笛卡尔割细胞方法

获取原文
获取原文并翻译 | 示例

摘要

A Cartesian cut-cell method which allows the solution of two- and three-dimensional viscous, compressible flow problems on arbitrarily refined graded meshes is presented. The finite-volume method uses cut cells at the boundaries rendering the method strictly conservative in terms of mass, momentum, and energy. For three-dimensional compressible flows, such a method has not been presented in the literature, yet. Since ghost cells can be arbitrarily positioned in space the proposed method is flexible in terms of shape and size of embedded boundaries. A key issue for Cartesian grid methods is the discretization at mesh interfaces and boundaries and the specification of boundary conditions. A linear least-squares method is used to reconstruct the cell center gradients in irregular regions of the mesh, which are used to formulate the surface flux. Expressions to impose boundary conditions and to compute the viscous terms on the boundary are derived. The overall discretization is shown to be second-order accurate in L~1.The accuracy of the method and the quality of the solutions are demonstrated in several two- and three-dimensional test cases of steady and unsteady flows.
机译:提出了一种笛卡尔切胞方法,该方法可以解决任意精制渐变网格上的二维和三维粘性可压缩流动问题。有限体积方法在边界处使用切割单元,从而使该方法在质量,动量和能量方面严格保守。对于三维可压缩流,这种方法尚未在文献中提出。由于重影单元可以在空间中任意放置,因此所提出的方法在嵌入边界的形状和大小方面很灵活。笛卡尔网格方法的一个关键问题是网格界面和边界的离散化以及边界条件的规范。线性最小二乘法用于重建网格不规则区域中的单元中心梯度,用于公式化表面通量。得出施加边界条件并计算边界上粘性项的表达式。结果表明,总体离散化在L〜1中是二阶精度的。该方法的精度和解的质量在几个二维和三维稳态和非稳态流动的测试案例中得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号