首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A spectral finite element approach to modeling soft solids excited with high-frequency harmonic loads
【24h】

A spectral finite element approach to modeling soft solids excited with high-frequency harmonic loads

机译:频谱有限元方法对高频谐波载荷激发的软固体进行建模

获取原文
获取原文并翻译 | 示例

摘要

An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/ or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number.
机译:提出并评估了一种利用高阶谱有限元对谐波激发的软固体进行高效,准确的有限元分析的方法。当激励频率相对于刚度(即高波数)变高时,用于建模此类系统的亥姆霍兹(Helmholtz)型方程会遭受称为污染的附加数值误差,例如,在受到超声激励的软组织中就是这种情况。使用高阶多项式元素可以减少这种污染误差,但是需要额外考虑以抵消Runge现象和/或较差的线性系统条件,这导致使用了光谱元素方法。这项工作详细检查了高阶谱元素对此类问题的计算优势和实际适用性。所检查的频谱元素是高斯拉格朗日多项式的张量积元素(即四元或砖元素),它们具有非均匀分布的高斯-洛巴托-莱杰德雷节点。给出了一个剪力波实例,以说明高阶元素的精度和计算量对波数的依赖性。然后,显示了实际超声驱动的振动实验的粘弹性声结构相互作用有限元模型的收敛性研究。已经发现,给定精度水平所需的自由度数会随着元素阶数的增加而持续降低。但是,发现计算上最佳的元素顺序在很大程度上取决于波数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号