首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A posteriori error estimates for combined finite volume-finite element discretizations of reactive transport equations on nonmatching grids
【24h】

A posteriori error estimates for combined finite volume-finite element discretizations of reactive transport equations on nonmatching grids

机译:非匹配网格上反应输运方程的有限体积-有限元离散化的后验误差估计

获取原文
获取原文并翻译 | 示例

摘要

We derive in this paper guaranteed and fully computable a posteriori error estimates for vertex-centered finite-volume-type discretizations of transient linear convection-diffusion-reaction equations. Our estimates enable actual control of the error measured either in the energy norm or in the energy norm augmented by a dual norm of the skew-symmetric part of the differential operator. Lower bounds, global-in-space but local-in-time, are also derived. These lower bounds are fully robust with respect to convection or reaction dominance and the final simulation time in the augmented norm setting. On the basis of the derived estimates, we propose an adaptive algorithm which enables to automatically achieve a user-given relative precision. This algorithm also leads to efficient calculations as it balances the time and space error contributions. As an example, we apply our estimates to the combined finite volume-finite element scheme, including such features as use of mass lumping for the time evolution or reaction terms, of upwind weighting for the convection term, and discretization on nonmatching meshes possibly containing nonconvex and non-star-shaped elements. A collection of numerical experiments illustrates the efficiency of our estimates and the use of the space-time adaptive algorithm.
机译:我们在本文中得出了有保证且可完全计算的瞬态线性对流扩散反应方程的顶点为中心的有限体积类型离散化的后验误差估计。我们的估计值可以实际控制在能量范数中或在由微分算子的偏斜对称部分的对偶范数的对偶范数增强的能量范数中测得的误差。还导出了下限,即空间全局但时间局部。这些下限在对流或反作用优势以及增强范数设置中的最终模拟时间方面具有完全的鲁棒性。基于得出的估计值,我们提出了一种自适应算法,该算法能够自动实现用户给定的相对精度。该算法还平衡了时间和空间误差的影响,因此也导致了高效的计算。例如,我们将估计值应用于有限体积-有限元组合方案,包括以下特征:对时间演化或反应项使用质量集总,对流项使用迎风权重,以及可能包含非凸面的不匹配网格上的离散化和非星形元素。一组数值实验说明了我们的估计效率以及时空自适应算法的使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号