首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A stabilized mixed finite element method for the incompressible shear-rate dependent non-Newtonian fluids: Variational Multiscale framework and consistent linearization
【24h】

A stabilized mixed finite element method for the incompressible shear-rate dependent non-Newtonian fluids: Variational Multiscale framework and consistent linearization

机译:不可压缩剪切速率相关的非牛顿流体的稳定混合有限元方法:变分多尺度框架和一致的线性化

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a stabilized mixed finite element method for shear-rate dependent incompressible fluids. The viscosity of the fluid is considered a function of the second invariant of the rate-of-deformation tensor, thus making the shear-stress shear-strain relation nonlinear. The weak form of the generalized Navier-Stokes equations is cast in the Variational Multiscale (VMS) framework that leads to a two-level description of the problem. Consistent linearization of the fine-scale problem with respect to the fine-scale velocity field and the use of bubble functions to expand the fine-scale trial and test functions lead to an analytical expression for the fine-scale velocity along with a definition of the stabilization tensor t. The ensuing nonlinear stabilized form is presented and the consistent tangent tensor is derived. Numerical convergence of the proposed method on structured and unstructured meshes that are composed of linear triangles and bilinear quadrilaterals are presented. Shear-thinning and shear-thickening effects are investigated via the backward facing step problem and the effects of geometric parameters on the flow characteristics are highlighted. Time dependent features are investigated via the transient vortex-shedding problem and the accuracy and stability properties of the new method are shown.
机译:本文提出了一种依赖于剪切速率的不可压缩流体的稳定混合有限元方法。流体的粘度被认为是形变率张量的第二不变性的函数,因此使剪切应力剪切应变关系成为非线性。广义Navier-Stokes方程的弱形式在变分多尺度(VMS)框架中进行转换,从而导致对该问题进行两级描述。相对于细尺度速度场,细尺度问题的一致线性化以及使用气泡函数扩展细尺度试验和测试函数导致了细尺度速度的解析表达式以及其定义。稳定张量t给出了随后的非线性稳定形式,并推导了相切正切张量。提出了该方法在由线性三角形和双线性四边形组成的结构化网格和非结构化网格上的数值收敛性。通过后向台阶问题研究了变稀薄和剪切变厚的效果,并强调了几何参数对流动特性的影响。通过瞬态涡流脱落问题研究了与时间有关的特征,并显示了新方法的准确性和稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号