首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Structural topology optimization based on non-local Shepard interpolation of density field
【24h】

Structural topology optimization based on non-local Shepard interpolation of density field

机译:基于密度场非局部Shepard插值的结构拓扑优化

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a non-local density interpolation strategy for topology optimization based on nodal design variables. In this method, design variable points can be positioned at any locations in the design domain and may not necessarily coincide with elemental nodes. By using the Shepard family of interpo-lants, the density value of any given computational point is interpolated by design variable values within a certain circular influence domain of the point. The employed interpolation scheme has an explicit form and satisfies non-negative and range-restricted properties required by a physically significant density interpolation. Since the discretizations of the density field and the displacement field are implemented on two independent sets of points, the method is well suited for a topology optimization problem with a design domain containing higher-order elements or non-quadrilateral elements. Moreover, it has the ability to yield mesh-independent solutions if the radius of the influence domain is reasonably specified. Numerical examples demonstrate the validity of the proposed formulation and numerical techniques. It is also confirmed that the method can successfully avoid checkerboard patterns as well as "islanding" phenomenon.
机译:本文提出了一种基于节点设计变量的拓扑优化非局部密度插值策略。在这种方法中,设计变量点可以位于设计域中的任何位置,并且不一定与元素节点重合。通过使用Shepard插值器系列,任何给定计算点的密度值都可以通过该点的某个圆形影响域内的设计变量值进行插值。所采用的插值方案具有显式形式,并且满足物理上重要的密度插值所要求的非负和范围受限的属性。由于密度场和位移场的离散化是在两个独立的点集上实现的,因此该方法非常适合于具有包含高阶元素或非四边形元素的设计域的拓扑优化问题。此外,如果合理地指定了影响域的半径,则它具有产生独立于网格的解的能力。数值例子证明了所提出的公式和数值技术的有效性。还证实了该方法可以成功地避免棋盘图案以及“孤岛”现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号