首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A one field full discontinuous Galerkin method for Kirchhoff-Love shells applied to fracture mechanics
【24h】

A one field full discontinuous Galerkin method for Kirchhoff-Love shells applied to fracture mechanics

机译:适用于Kirchhoff-Love壳的一场完全不连续Galerkin方法在断裂力学中的应用

获取原文
获取原文并翻译 | 示例

摘要

In order to model fracture, the cohesive zone method can be coupled in a very efficient way with the finite element method. Nevertheless, there are some drawbacks with the classical insertion of cohesive elements. It is well known that, on one the hand, if these elements are present before fracture there is a modification of the structure stiffness, and that, on the other hand, their insertion during the simulation requires very complex implementation, especially with parallel codes. These drawbacks can be avoided by combining the cohesive method with the use of a discontinuous Galerkin formulation. In such a formulation, all the elements are discontinuous and the continuity is weakly ensured in a stable and consistent way by inserting extra terms on the boundary of elements. The recourse to interface elements allows to substitute them by cohesive elements at the onset of fracture. The purpose of this paper is to develop this formulation for Kirchhoff-Love plates and shells. It is achieved by the establishment of a full DG formulation of shell combined with a cohesive model, which is adapted to the special thickness discretization of the shell formulation. In fact, this cohesive model is applied on resulting reduced stresses which are the basis of thin structures formulations. Finally, numerical examples demonstrate the efficiency of the method.
机译:为了模拟断裂,可以将粘结带方法与有限元方法非常有效地结合在一起。尽管如此,经典插入内聚元素还是有一些缺点。众所周知,一方面,如果这些元素在断裂之前存在,则结构刚度会发生变化;另一方面,在仿真过程中插入它们需要非常复杂的实现,尤其是使用并行代码。通过将粘结方法与不连续的Galerkin配方结合使用,可以避免这些缺点。在这种表述中,所有元素都是不连续的,并且通过在元素的边界上插入额外的项,以稳定和一致的方式弱地确保了连续性。对界面元素的求助允许在骨折开始时用内聚元素替代它们。本文的目的是开发用于Kirchhoff-Love板和壳的配方。这是通过建立完整的DG外壳配方与内聚模型相结合来实现的,该模型适合于外壳配方的特殊厚度离散化。实际上,这种内聚模型适用于所产生的减小的应力,这是薄结构配方的基础。最后,数值算例证明了该方法的有效性。

著录项

  • 来源
    《Computer Methods in Applied Mechanics and Engineering》 |2011年第46期|p.3223-3241|共19页
  • 作者

    G. Becker; C. Geuzaine; L Noels;

  • 作者单位

    University of Liege, Department of Aerospace and Mechanical Engineering, Computational & Multiscale Mechanics of Materials, Chemin des Chevreuils 1, B-4000 Liege, Belgium;

    University of Liege, Department of Electrical Engineering and Computer Science, B28 P32, B-4000 Liege, Belgium;

    University of Liege, Department of Aerospace and Mechanical Engineering, Computational & Multiscale Mechanics of Materials, Chemin des Chevreuils 1, B-4000 Liege, Belgium;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    discontinuous galerkin method; shells; kirchhoff-love; finite-elements; fracture mechanics; cohesive element;

    机译:不连续伽勒金法贝壳基尔霍夫之恋有限元断裂力学内聚元素;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号