首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Computational competition of symmetric mixed FEM in linear elasticity
【24h】

Computational competition of symmetric mixed FEM in linear elasticity

机译:对称混合有限元的线弹性计算竞争

获取原文
获取原文并翻译 | 示例

摘要

The Navier-Lame equation for linear elasticity has evoked the design of various non-standard finite element methods (FEM) in order to overcome the locking phenomenon. Recent developments of Arnold and Winther in 2002 involve a stable mixed method which strongly fulfils the symmetry constraint. Subsequently, two H(div) non-conforming symmetric mixed methods arose. This paper comments on the implementation of all those mixed FEM and provides a numerical comparison of the different symmetric mixed schemes for linear elasticity. The computational survey also includes the low-order elements of weak symmetry (PEERS), the non-conforming Kouhia and Stenberg (KS) elements plus the conforming displacement Pt-FEM for k= 1, 2, 3,4. Numerical experiments confirm the theoretical convergence rates for sufficiently smooth solutions and illustrate the superiority of the symmetric MFEM amongst the methods of second or third order.
机译:为了克服锁定现象,用于线性弹性的Navier-Lame方程引起了各种非标准有限元方法(FEM)的设计。 Arnold和Winther在2002年的最新进展涉及稳定的混合方法,该方法强烈满足对称约束。随后,出现了两种H(div)不合格对称混合方法。本文对所有这些混合有限元的实现进行了评论,并对线性弹性的不同对称混合方案进行了数值比较。计算调查还包括弱对称性的低阶元素(PEERS),不合格的Kouhia和Stenberg(KS)元素以及k = 1、2、3、4时的合格位移Pt-FEM。数值实验证实了足够光滑解的理论收敛速度,并说明了二阶或三阶方法在对称MFEM中的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号