首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A mixed formulation of the Bingham fluid flow problem: Analysis and numerical solution
【24h】

A mixed formulation of the Bingham fluid flow problem: Analysis and numerical solution

机译:宾汉流体流动问题的混合公式:分析和数值解

获取原文
获取原文并翻译 | 示例

摘要

In this paper we introduce a mixed formulation of the Bingham fluid flow problem. We consider both the original and a regularized version of the problem, where a parameter £ is introduced, forcing the entire domain to be formally a fluid region. In general, common solvers for the regularized problem experience a performance degradation when the parameter e gets smaller. The method studied here introduces an auxiliary tensor variable and shows enhanced numerical properties for small values of e. A good performance is also observed for the non-regularized case. The well posedness for the regularized problem and the equivalence - at the continuous level - between the original (primitive variables) and the mixed formulation are demonstrated. We analyze properties of linearized problems that are relevant for the convergence of numerical solvers. A finite element method for the mixed formulation is discussed. Numerical results confirm the predicted better performances of the mixed formulation when compared to the primitive variables formulation. A comparison to a non-regularized solver based on the augmented Duvaut-Lions-Glowinski formulation of the problem is carried out as well.
机译:在本文中,我们介绍了宾厄姆流体流动问题的混合公式。我们同时考虑了问题的原始版本和正则版本,其中引入了参数£,从而迫使整个域正式地成为流体区域。通常,当参数e变小时,用于正则化问题的通用求解器的性能会下降。此处研究的方法引入了一个辅助张量变量,并针对较小的e值显示了增强的数值特性。对于非正规情况,也观察到良好的性能。证明了正则化问题的适定性以及在连续水平上原始(原始变量)与混合公式之间的等效性。我们分析与数值求解器收敛有关的线性化问题的性质。讨论了混合配方的有限元方法。数值结果证实了与原始变量配方相比,混合配方具有更好的预测性能。还与基于问题的增广Duvaut-Lions-Glowinski公式的非正规求解器进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号