首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Stability and convergence of sequential methods for coupled flow and geomechanics: Drained and undrained splits
【24h】

Stability and convergence of sequential methods for coupled flow and geomechanics: Drained and undrained splits

机译:流动与地质力学耦合方法的稳定性和收敛性:排水和不排水分流

获取原文
获取原文并翻译 | 示例

摘要

We perform a stability and convergence analysis of sequential methods for coupled flow and geomechanics, in which the mechanics sub-problem is solved first. We consider slow deformations, so that inertia is negligible and the mechanical problem is governed by an elliptic equation. We use Biot's self-consistent theory to obtain the classical parabolic-type flow problem. We use a generalized midpoint rule (parameter α between 0 and 1) time discretization, and consider two classical sequential methods: the drained and undrained splits. The von Neumann method provides sharp stability estimates for the linear poroelasticity problem. The drained split with backward Euler time discretization (α- 1) is conditionally stable, and its stability depends only on the coupling strength, and it is independent of time step size. The drained split with the midpoint rule (a = 0.5) is unconditionally unstable. The mixed time discretization, with α= 1.0 for mechanics and α = 0.5 for flow, has the same stability properties as the backward Euler scheme. The von Neumann method indicates that the undrained split is unconditionally stable when α≥0.5. We extend the stability analysis to the nonlinear regime (poro-elastoplasticity) via the energy method. It is well known that the drained split does not inherit the contractivity property of the continuum problem, thereby precluding unconditional stability. For the undrained split we show that it is B-stable (therefore unconditionally stable at the algorithmic level) when α≥ 0.5. We also analyze convergence of the drained and undrained splits, and derive the apriori error estimates from matrix algebra and spectral analysis. We show that the drained split with a fixed number of iterations is not convergent even when it is stable. The undrained split with a fixed number of iterations is convergent for a compressible system (i.e., finite Biot modulus). For a nearly-incompressible system (i.e., very large Biot modulus), the undrained split loses first-order accuracy, and becomes non-convergent in time. We also study the rate of convergence of both splits when they are used in a fully-iterated sequential scheme. When the medium permeability is high or the time step size is large, which corresponds to a high diffusion of pressure, the error amplification of the drained split is lower and therefore converges faster than the undrained split. The situation is reversed in the case of low permeability and small time step size. We provide numerical experiments supporting all the stability and convergence estimates of the drained and undrained splits, in the linear and nonlinear regimes. We also show that our spatial discretization (finite volumes for flow and finite elements for mechanics) removes the well-documented spurious instability in consolidation problems at early times.
机译:我们对流固耦合的顺序方法进行了稳定性和收敛性分析,其中首先解决了力学子问题。我们考虑了缓慢的变形,因此惯性可以忽略不计,并且机械问题由椭圆方程控制。我们使用比奥的自洽理论来获得经典的抛物线型流动问题。我们使用广义中点法则(参数α在0和1之间)进行时间离散化,并考虑两种经典的顺序方法:排水和不排水拆分。冯·诺依曼方法为线性多孔弹性问题提供了清晰的稳定性估计。具有后向Euler时间离散化(α-1)的排水裂隙在条件上是稳定的,并且其稳定性仅取决于耦合强度,并且与时间步长无关。用中点规则(a = 0.5)排空的拆分是无条件地不稳定的。混合时间离散化(对于力学而言为α= 1.0,对于流动而言为α= 0.5)具有与后向Euler方案相同的稳定性。冯·诺依曼方法表明,当α≥0.5时,不排水裂隙是无条件稳定的。我们通过能量方法将稳定性分析扩展到非线性状态(多孔弹塑性)。众所周知,排空的拆分不继承连续性问题的收缩性,从而排除了无条件的稳定性。对于不排水的分裂,我们证明当α≥0.5时,它是B稳定的(因此在算法水平上是无条件稳定的)。我们还分析了排水沟和不排水沟的收敛,并从矩阵代数和谱分析得出先验误差估计。我们显示,即使迭代次数稳定,耗竭的拆分也不会收敛。对于可压缩系统(即有限的Biot模量),具有固定迭代次数的不排水拆分收敛。对于几乎不可压缩的系统(即非常大的Biot模量),不排水的缝隙失去了一阶精度,并且在时间上无法收敛。我们还研究了在完全迭代的顺序方案中使用两个拆分时的收敛速度。当介质渗透率高或时间步长较大时,这对应于压力的高扩散,排空片段的误差放大率较低,因此收敛快于不排空片段。在低渗透率和小时间步长的情况下情况相反。我们提供数值实验,支持线性和非线性方案中排水和不排水裂缝的所有稳定性和收敛性估计。我们还表明,我们的空间离散化(有限的流动体积和有限的力学力学尺寸)消除了早期在固结问题中有据可查的虚假不稳定性。

著录项

  • 来源
    《Computer Methods in Applied Mechanics and Engineering》 |2011年第24期|p.2094-2116|共23页
  • 作者

    J. Kim; H.A. Tchelepi; R. Juanes;

  • 作者单位

    Department of Energy Resources Engineering, Stanford University, Green Earth Sciences Building, 367 Panama Street, Stanford, CA 94305, USA,Earth Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road 90R1116, Berkeley, CA 94720, USA;

    Department of Energy Resources Engineering, Stanford University, Green Earth Sciences Building, 367 Panama Street, Stanford, CA 94305, USA;

    Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 48-319, Cambridge, MA 02139, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Geomechanics; Poromechanics; Stability analysis; Convergence analysis; Drained split; Undrained split;

    机译:地质力学;动力力学稳定性分析;收敛分析;排干不排水的分裂;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号