首页> 外文学位 >Sequential methods for coupled geomechanics and multiphase flow.
【24h】

Sequential methods for coupled geomechanics and multiphase flow.

机译:地质力学和多相流耦合的顺序方法。

获取原文
获取原文并翻译 | 示例

摘要

We study sequential solution methods for coupled multiphase flow and geomechanics. Sequential methods are desirable from a software development perspective. If the sequential solution strategies have stability and convergence properties that are close to those of the fully coupled approach, they can be very competitive for solving problems of practical interest. This is because of the high investment cost associated with developing unified flow-mechanics simulators and the high computational cost of the fully coupled (i.e., simultaneous solution) method. In these sequential-implicit solution strategies, the flow and mechanics problems are solved in sequence. Implicit time discretization is used when solving each of the flow and mechanics problems. The specific details of the form of the coupling scheme and how the two problems of flow and mechanics communicate play important roles in the viability of the coupling strategy. Here, four sequential coupling methods are considered in great detail: drained, undrained, fixed-strain, and fixed-stress splits. For space discretization, we employ a finite-volume method for flow and a finite-element approach for mechanics. This space discretization yields stable solutions at early time and allows for using existing flow and mechanical simulators. The drained and undrained splits solve the mechanical problem first, whereas the fixed-strain and fixed-stress splits solve the flow problem first. The stability and convergence properties for single-phase flow are analyzed for the four sequential-implicit methods. The Von Neumann and energy methods are used to analyze the stability of the linear and nonlinear problems, respectively. The derived stability estimates indicate that the drained and fixed-strain splits, which are the obvious splits, are, at best, conditionally stable. Moreover, their stability limit depends on the coupling strength only and is independent of time step size. On the other hand, the derived a-priori estimates indicates that the undrained and fixed-stress splits are unconditionally stable regardless of the coupling strength. All the results have been verified by performing numerical simulations for several test cases.;To analyze the convergence rates of the various coupling algorithms, we use matrix and spectral methods. The drained and fixed-strain splits can suffer from non-convergence, even when they are stable. On the other hand, the undrained split yields first-order accuracy in time for a compressible fluid, but it exhibits slow convergence rates for high coupling strength and suffers from non-convergence for purely incompressible systems (solid grains and fluid). The fixed-stress split shows first-order accuracy in time regardless of the fluid type and coupling strength, and it yields a less stiff mechanical problem. Furthermore, the fixed-stress split requires only a few iterations to converge, even for very difficult problems with strong coupling.;The stability and convergence behaviors of the four sequential methods for coupled multiphase flow and geomechanics are also analyzed using spectral and energy methods. The formulation for the flow part can be either fully implicit, or IMPES (IMplicit Pressure, Explicit Saturations). The derived a-priori estimates for the four sequential methods are similar to their single-phase counterparts. That is, the undrained and fixed-stress splits show unconditional stability, and the fixed-stress split exhibits faster convergence rates compared with the other sequential methods. Therefore, we strongly recommend the fixed-stress split with backward Euler time integration, a finite-volume scheme for flow, and a finite-clement discretization for mechanics.
机译:我们研究多相流与地质力学耦合的顺序求解方法。从软件开发的角度来看,顺序方法是理想的。如果顺序解决方案策略的稳定性和收敛性接近于完全耦合方法,则它们在解决实际感兴趣的问题上可能具有很大的竞争力。这是因为与开发统一的流动力学模拟器相关的高投资成本以及完全耦合(即同时解决方案)方法的高计算成本。在这些顺序隐式解决方案策略中,依次解决了流动和力学问题。解决每个流量和力学问题时,将使用隐式时间离散化。耦合方案形式的具体细节以及流动和力学这两个问题如何通信对耦合策略的可行性起着重要作用。在此,将详细介绍四种顺序耦合方法:排水,不排水,固定应变和固定应力劈裂。对于空间离散化,我们对流采用有限体积方法,对力学采用有限元方法。这种空间离散可在早期产生稳定的解决方案,并允许使用现有的流量和机械模拟器。排水和不排水的缝隙首先解决了机械问题,而固定应变和固定应力的缝隙首先解决了流动问题。分析了四种顺序隐式方法的单相流稳定性和收敛性。冯·诺依曼和能量方法分别用于分析线性和非线性问题的稳定性。导出的稳定性估计值表明,排水和固定应变裂缝(明显的裂缝)充其量是条件稳定的。此外,它们的稳定性极限仅取决于耦合强度,并且与时间步长无关。另一方面,推导的先验估计表明,不考虑耦合强度,不排水和固定应力裂缝是无条件稳定的。通过对几个测试案例进行数值模拟,所有结果都得到了验证。为了分析各种耦合算法的收敛速度,我们使用矩阵和谱方法。排水和固定应变的裂缝即使处于稳定状态,也可能会出现不收敛的情况。另一方面,不排水的裂隙在时间上对可压缩流体产生一阶精度,但是对于高耦合强度,它表现出较慢的收敛速度,并且对于纯不可压缩的系统(固体颗粒和流体)存在不收敛的问题。固定应力裂隙在时间上显示一阶精度,而与流体类型和耦合强度无关,并且产生的刚性问题较小。此外,即使对于非常强耦合的难题,固定应力分裂也只需要进行几次迭代即可收敛。;还使用频谱和能量方法分析了耦合多相流和地质力学的四种顺序方法的稳定性和收敛特性。流动部分的公式可以是完全隐式的,也可以是IMPES(隐式压力,显式饱和)。四种顺序方法的推导先验估计与它们的单相方法相似。也就是说,不排水和固定应力的分裂表现出无条件的稳定性,并且与其他顺序方法相比,固定应力的分裂表现出更快的收敛速度。因此,我们强烈建议采用后向Euler时间积分,流的有限体积方案和力学的有限裂隙离散化的固定应力拆分方法。

著录项

  • 作者

    Kim, Jihoon.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Civil.;Engineering Petroleum.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 242 p.
  • 总页数 242
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号