首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A new class of massively parallel direction splitting for the incompressible Navier-Stokes equations
【24h】

A new class of massively parallel direction splitting for the incompressible Navier-Stokes equations

机译:不可压缩的Navier-Stokes方程的一类新型大规模平行方向分裂

获取原文
获取原文并翻译 | 示例

摘要

We introduce in this paper a new direction splitting algorithm for solving the incompressible Navier-Stokes equations. The main originality of the method consists of using the operator (1-θ_(xx)(I-θ_(yy)){I -θ_(zz)) for approximating the pressure correction instead of the Poisson operator as done in all the contemporary projection methods. The complexity of the proposed algorithm is significantly lower than that of projection methods, and it is shown the have the same stability properties as the Poisson-based pressure-correction techniques, either in standard or rotational form. The first-order (in time) version of the method is proved to have the same convergence properties as the classical first-order projection techniques. Numerical tests reveal that the second-order version of the method has the same convergence rate as its second-order projection counterpart as well. The method is suitable for parallel implementation and preliminary tests show excellent parallel performance on a distributed memory cluster of up to 1024 processors. The method has been validated on the three-dimensional lid-driven cavity flow using grids composed of up to 2 × 10~9 points.
机译:我们在本文中介绍了一种新的方向分解算法,用于求解不可压缩的Navier-Stokes方程。该方法的主要独创性是使用算符(1-θ_(xx)(I-θ_(yy)){I-θ_(zz))来代替压力修正,而不是像在所有现代方法中那样使用泊松算子投影方法。所提出算法的复杂度明显低于投影方法,并且显示了与基于泊松的压力校正技术相同的稳定性,无论是标准形式还是旋转形式。该方法的一阶(及时)版本被证明具有与经典一阶投影技术相同的收敛特性。数值测试表明,该方法的二阶版本也具有与二阶投影对应物相同的收敛速度。该方法适用于并行实现,初步测试显示在多达1024个处理器的分布式内存群集上具有出色的并行性能。该方法已在由多达2×10〜9个点组成的网格的三维盖驱动腔流中得到验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号