首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A finite element formulation for the doublet mechanics modeling of microstructural materials
【24h】

A finite element formulation for the doublet mechanics modeling of microstructural materials

机译:微观结构材料双重力学建模的有限元公式

获取原文
获取原文并翻译 | 示例

摘要

The doublet mechanics (DM) theory was developed [7,8] for modeling the behavior of solids where the microstructure is important. Within the DM theory, solid bodies are discretized as an ensemble of particles, with each pair of neighboring particles forming a 'doublet'. Microstructural strains and stresses are introduced through displacements and mutual interactions of the particles within the doublets. This description also includes a scale parameter, interpreted as the separation distance between two particles in a doublet. The DM theory is consistent with other microstructural approaches and reduces to continuum mechanics in the case of non-scale formulation. Several problems in solid mechanics have been treated analytically using DM [5]. In this work, DM is reformulated using a finite element approach with the aim of expanding even more the potential applications of such an approach. As a first step in our development we considered the microstructural elongation strains only, while the other two: shear and torsional are left for subsequent investigations. Two constitutive laws are considered: linear elastic and linear viscoelastic. A number of solved examples reveal the accuracy of the FE formulation developed for DM. The present numerical framework could be incorporated into various general numerical solution strategies, such as multi-scale-multidomain modeling, and further extended to include other constitutive relationships.
机译:发展了双峰力学(DM)理论[7,8],用于对微观结构很重要的固体行为进行建模。在DM理论中,将固体离散为一组粒子,每对相邻的粒子形成一个“双峰”。微结构的应变和应力是通过双峰内颗粒的位移和相互作用而引入的。该描述还包括比例参数,该参数被解释为双峰中两个粒子之间的分离距离。 DM理论与其他微结构方法是一致的,并且在无比例配方的情况下可简化为连续力学。固体力学中的几个问题已使用DM进行了分析处理[5]。在这项工作中,DM是使用有限元方法重新制定的,目的是进一步扩展这种方法的潜在应用。作为我们开发的第一步,我们仅考虑了微结构伸长应变,而其余两个剪切应变和扭转应变则留待后续研究。考虑了两个本构定律:线性弹性和线性粘弹性。许多已解决的示例揭示了为DM开发的FE配方的准确性。本数值框架可以并入各种通用数值解决方案策略中,例如多尺度多域建模,并且可以进一步扩展以包括其他本构关系。

著录项

  • 来源
  • 作者单位

    The Methodist Hospital Research Institute, 6670 BertnerAve., Houston, TX 77030, United States,Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, United States,Research and Development Center for Bioengineering, Sretenjskog Ustava 27, 34000 Kragujevac, Serbia;

    Research and Development Center for Bioengineering, Sretenjskog Ustava 27, 34000 Kragujevac, Serbia,Metropolitan University, Tadeusa Koscuska 63, 11000 Belgrade, Serbia;

    The Methodist Hospital Research Institute, 6670 BertnerAve., Houston, TX 77030, United States;

    The Methodist Hospital Research Institute, 6670 BertnerAve., Houston, TX 77030, United States;

    The Methodist Hospital Research Institute, 6670 BertnerAve., Houston, TX 77030, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Doublet mechanics theory; Microstructural discrete models; Multiscale model; Finite element method; Flamant problem; Kelvin problem;

    机译:双重力学理论;微观结构离散模型;多尺度模型;有限元法;Flamant问题;开尔文问题;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号