首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Sensitivity analysis with the modified Heaviside function for the optimal layout design of multi-component systems
【24h】

Sensitivity analysis with the modified Heaviside function for the optimal layout design of multi-component systems

机译:修改后的Heaviside函数的灵敏度分析可实现多组件系统的最佳布局设计

获取原文
获取原文并翻译 | 示例

摘要

Two kinds of design variables, i.e., pseudo-density variables associated with the framework structure and location design variables associated with connected components are involved in the layout design of multi-component systems. Although sensitivities with respect to the first ones can easily be carried out as in topology optimization, the semi-analytical method (SAM) is often used for sensitivity analysis with respect to the location design variables. Due to the geometric perturbation of the finite element mesh, the latter can then be regarded as a geometric perturbation model (GPM). In this paper, we propose a material perturbation model (MPM) using fixed finite element (FE) mesh for sensitivity analysis with respect to location design variables. The material discontinuity across the boundary between each component and the framework structure is smoothed approximately by means of a modified Heaviside function. When a location design variable of a certain component is perturbed, attached finite elements to the component boundary are assumed to undertake only a shift of material properties while the finite element mesh itself remains geometrically unchanged. As a result, analytical sensitivities with respect to location design variables are achieved as easily as for pseudo-density variables. The computing efficiency is thus improved because the velocity field for the mesh perturbation in the semi-analytical scheme is no longer needed. The MPM is illustrated by means of numerical tests, especially the design optimization of 3D multi-component systems.
机译:多组件系统的布局设计涉及两种设计变量,即与框架结构关联的伪密度变量和与连接的组件关联的位置设计变量。尽管可以像在拓扑优化中一样轻松地实现对第一个传感器的灵敏度,但是半解析法(SAM)通常用于位置设计变量的灵敏度分析。由于有限元网格的几何扰动,可以将后者视为几何扰动模型(GPM)。在本文中,我们提出了一种使用固定有限元(FE)网格的材料扰动模型(MPM),以针对位置设计变量进行灵敏度分析。借助改进的Heaviside函数,可以大致平滑每个组件与框架结构之间的边界上的材料不连续性。当某个组件的位置设计变量受到干扰时,假定将附加的有限元连接到组件边界仅承担材料属性的移动,而有限元网格本身在几何上保持不变。结果,与伪密度变量一样容易获得关于位置设计变量的分析灵敏度。由于不再需要半解析方案中用于网格摄动的速度场,因此提高了计算效率。通过数值测试,特别是3D多组件系统的设计优化来说明MPM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号