首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Fast multipole boundary element method for the Laplace equation in a locally perturbed half-plane with a Robin boundary condition
【24h】

Fast multipole boundary element method for the Laplace equation in a locally perturbed half-plane with a Robin boundary condition

机译:具有Robin边界条件的局部扰动半平面中Laplace方程的快速多极边界元方法

获取原文
获取原文并翻译 | 示例

摘要

A fast multipole boundary element method (FM-BEM) for solving large-scale potential problems ruled by the Laplace equation in a locally-perturbed 2-D half-plane with a Robin boundary condition is developed in this paper. These problems arise in a wide gamut of applications, being the most relevant one the scat-tering of water-waves by floating and submerged bodies in water of infinite depth. The method is based on a multipole expansion of an explicit representation of the associated Green's function, which depends on a combination of complex-valued exponential integrals and elementary functions. The resulting method exhibits a computational performance and memory requirements similar to the classic FM-BEM for full-plane potential problems. Numerical examples demonstrate the accuracy and efficiency of the method.
机译:本文提出了一种快速多极边界元方法(FM-BEM),用于解决具有罗宾边界条件的局部摄动二维半平面中由拉普拉斯方程决定的大规模潜在问题。这些问题出现在各种各样的应用中,其中最相关的是无限深的水中漂浮和淹没物体对水波的散射。该方法基于相关格林函数的显式表示的多极展开,该展开取决于复数值指数积分和基本函数的组合。对于全平面潜在问题,所得方法显示出与经典FM-BEM相似的计算性能和内存要求。数值算例表明了该方法的准确性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号