首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Multiscale computational homogenization methods with a gradient enhanced scheme based on the discontinuous Galerkin formulation
【24h】

Multiscale computational homogenization methods with a gradient enhanced scheme based on the discontinuous Galerkin formulation

机译:基于不连续Galerkin公式的具有梯度增强方案的多尺度计算均质化方法

获取原文
获取原文并翻译 | 示例

摘要

When considering problems of dimensions close to the characteristic length of the material, the size effects can not be neglected and the classical (so-called first-order) multiscale computational homogenization scheme (FMCH) looses accuracy, motivating the use of a second-order multiscale computational homogenization (SMCH) scheme. This second-order scheme uses the classical continuum at the micro-scale while considering a second-order continuum at the macro-scale. Although the theoretical background of the second-order continuum is increasing, the implementation into a finite element code is not straightforward because of the lack of high-order continuity of the shape functions. In this work, we propose a SMCH scheme relying on the discontinuous Calerkin (DG) method at the macro-scale, which simplifies the implementation of the method. Indeed, the DG method is a generalization of weak formulations allowing for inter-element discontinuities either at the C~0 level or at the C~1 level, and it can thus be used to constrain weakly the C~1 continuity at the macro-scale. The C~0 continuity can be either weakly constrained by using the DG method or strongly constrained by using usual C~0 displacement-based finite elements. Therefore, two formulations can be used at the macro-scale: (ⅰ) the full-discontinuous Galerkin formulation (FDG) with weak C~0 and C~1 continuity enforcements, and (ⅱ) the enriched discontinuous Galerkin formulation (EDG) with high-order term enrichment into the conventional C~0 finite element framework. The micro-problem is formulated in terms of standard equilibrium and periodic boundary conditions. A parallel implementation in three dimensions for non-linear finite deformation problems is developed, showing that the proposed method can be integrated into conventional finite element codes in a straightforward and efficient way.
机译:在考虑接近材料特征长度的尺寸问题时,不能忽略尺寸效应,并且经典(所谓的一阶)多尺度计算均质化方案(FMCH)降低了精度,从而激发了二阶的使用多尺度计算均质化(SMCH)方案。该二阶方案在微观尺度上使用经典连续体,而在宏观尺度上考虑二阶连续体。尽管二阶连续体的理论背景在不断增长,但是由于缺少形状函数的高阶连续性,将其实现为有限元代码并不容易。在这项工作中,我们在宏观尺度上提出了一种基于不连续Calerkin(DG)方法的SMCH方案,从而简化了该方法的实现。的确,DG方法是对弱公式的泛化,允许元素间的不连续性处于C〜0级别或C〜1级别,因此可用于弱约束宏观C〜1的连续性。规模。可以使用DG方法弱约束C-0连续性,也可以使用基于C-0位移的常规有限元强约束C-0连续性。因此,可以在宏观上使用两种公式:(ⅰ)具有不连续的C〜0和C〜1连续性的完全不连续的Galerkin公式(FDG),以及(ⅱ)具有以下特征的富集的不连续Galerkin公式(EDG):高阶项充实到常规C〜0有限元框架中。微观问题是根据标准平衡和周期性边界条件制定的。研究了非线性有限变形问题在三维上的并行实现,表明所提出的方法可以以简单有效的方式集成到常规有限元代码中。

著录项

  • 来源
  • 作者

    V.-D.Nguyen; G.Becker; L.Noels;

  • 作者单位

    University of Liege (ULg), Department of Aerospace and Mechanical Engineering, Computational & Multiscale Mechanics of Materials, Chemin des Chevreuils 1, B-4000 Liege, Belgium;

    University of Liege (ULg), Department of Aerospace and Mechanical Engineering, Computational & Multiscale Mechanics of Materials, Chemin des Chevreuils 1, B-4000 Liege, Belgium;

    University of Liege (ULg), Department of Aerospace and Mechanical Engineering, Computational & Multiscale Mechanics of Materials, Chemin des Chevreuils 1, B-4000 Liege, Belgium;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Second-order; Discontinuous Calerkin; Periodic condition; FEM; Computational homogenization; Heterogeneous materials;

    机译:二阶不连续的Calerkin周期性状况;有限元计算均质化;异质材料;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号