首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A geometric structure-preserving discretization scheme for incompressible linearized elasticity
【24h】

A geometric structure-preserving discretization scheme for incompressible linearized elasticity

机译:不可压缩线性弹性的保几何结构离散方案

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a geometric discretization scheme for incompressible linearized elasticity. We use ideas from discrete exterior calculus (DEC) to write the action for a discretized elastic body modeled by a simplicial complex. After characterizing the configuration manifold of volume-preserving discrete deformations, we use Hamilton's principle on this configuration manifold. The discrete Euler-Lagrange equations are obtained without using Lagrange multipliers. The main difference between our approach and the mixed finite element formulations is that we simultaneously use three different discrete spaces for the displacement field. We explicitly derive the governing equations for the two-dimensional case, where the discrete spaces for the displacement field are constructed by P, polynomials over primal meshes for incompressibility constraint, P_0 polynomials over dual meshes for the kinetic energy, and P_1 polynomials over support volumes for the elastic energy, and the discrete space of the pressure field is constructed by P_0 polynomials over primal meshes. We test the efficiency and robustness of this geometric scheme using some numerical examples. In particular, we do not see any volume locking and/or checkerboarding of pressure in our numerical examples. This suggests that our choice of discrete solution spaces is compatible.
机译:在本文中,我们提出了不可压缩线性弹性的几何离散方案。我们使用离散外部演算(DEC)的思想来编写由简单复数建模的离散化弹性体的动作。在表征了体积保持离散变形的构造流形之后,我们在该构造流形上使用汉密尔顿原理。无需使用拉格朗日乘数即可获得离散的Euler-Lagrange方程。我们的方法与混合有限元公式之间的主要区别在于,我们同时对位移场使用了三个不同的离散空间。我们明确推导出二维情况的控制方程,其中位移场的离散空间由P构造,原始网格上的多项式用于不可压缩性约束,双网格上的P_0多项式用于动能,而支撑体积上的P_1多项式对于弹性能量,压力场的离散空间是由原始网格上的P_0多项式构造的。我们使用一些数值示例来测试这种几何方案的效率和鲁棒性。特别是,在我们的数值示例中,我们看不到任何体积锁定和/或棋盘格状变化。这表明我们对离散解空间的选择是兼容的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号