首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Convergence analysis of a new multiscale finite element method with the P_0/P_0 element for the incompressible flow
【24h】

Convergence analysis of a new multiscale finite element method with the P_0/P_0 element for the incompressible flow

机译:具有不可压缩流的P_0 / P_0元素的新型多尺度有限元方法的收敛性分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new multiscale finite element method for the stationary Navier-Stokes problem. This new method for the lowest order finite element pairs P_1/P_0 is based on the multiscale enrichment and derived from the Navier-Stokes problem itself. Therefore, the new multiscale finite element method better reflects the nature of the nonlinear problem. The well-posedness of this new discrete problem is proved under the standard assumption. Meanwhile, convergence of the optimal order in H~1-norm for velocity and L~2-norm for pressure is obtained. Especially, via applying a new dual problem for the incompressible Navier-Stokes problem and some techniques in the process for proof, we establish the convergence of the optimal order in L~2-norm for the velocity. Finally, numerical examples confirm our theory analysis for this new multiscale finite element method and validate the high effectiveness of this new method.
机译:本文针对平稳的Navier-Stokes问题提出了一种新的多尺度有限元方法。最低阶有限元对P_1 / P_0的这种新方法基于多尺度富集,并从Navier-Stokes问题本身推导而来。因此,新的多尺度有限元方法可以更好地反映非线性问题的性质。在标准假设下证明了这个新离散问题的适定性。同时,获得了速度H〜1-范数和压力L〜2-范数最优阶的收敛性。特别是,通过对不可压缩的Navier-Stokes问题应用新的对偶问题以及证明过程中的一些技术,我们建立了速度L〜2-范数中最优阶的收敛性。最后,数值算例证实了我们对这种新的多尺度有限元方法的理论分析,并验证了这种新方法的高有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号