首页> 外文期刊>Applied numerical mathematics >Two-grid P_0~2-P_1 mixed finite element methods combined with Crank-Nicolson scheme for a class of nonlinear parabolic equations
【24h】

Two-grid P_0~2-P_1 mixed finite element methods combined with Crank-Nicolson scheme for a class of nonlinear parabolic equations

机译:一类非线性抛物方程的两网格P_0〜2-P_1混合有限元方法与Crank-Nicolson格式

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we discuss a priori error estimates of two-grid mixed finite element methods for a class of nonlinear parabolic equations. The gradient for the method belongs to the square integrable space instead of the classical H(div; Omega) space. P-0(2)-P-1 mixed finite elements and Crank-Nicolson method are used for the spatial and temporal discretization. First, we derive the optimal a priori error estimates for all variables. Second, we present a two-grid scheme and analyze its convergence. It is shown that when the two mesh sizes satisfy h = H-2, the two-grid method achieves the same convergence property as the P-0(2)-P-1 mixed finite element method. Finally, we give a numerical example to verify the theoretical results. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
机译:在本文中,我们讨论了一类非线性抛物方程的两网格混合有限元方法的先验误差估计。该方法的梯度属于正方形可积空间,而不是经典的H(div; Omega)空间。 P-0(2)-P-1混合有限元和Crank-Nicolson方法用于空间和时间离散化。首先,我们得出所有变量的最优先验误差估计。其次,我们提出一个两网格方案并分析其收敛性。结果表明,当两个网格尺寸满足h = H-2时,双网格方法具有与P-0(2)-P-1混合有限元方法相同的收敛性。最后,我们给出一个数值例子来验证理论结果。 (C)2018年IMACS。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号