首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Residual-based variational multiscale turbulence models for unstructured tetrahedral meshes
【24h】

Residual-based variational multiscale turbulence models for unstructured tetrahedral meshes

机译:非结构四面体网格的基于残差的变分多尺度湍流模型

获取原文
获取原文并翻译 | 示例

摘要

This paper presents three-level residual-based turbulence models for the incompressible Navier-Stokes equations. Employing the variational multiscale (VMS) framework, the velocity and pressure fields are decomposed into two overlapping hierarchical scales, thereby leading to a system of coupled mixed field problems. The mixed problem at the fine scales is stabilized via a subsequent VMS application that results in a further decomposition of the fine-scale velocity field into level-I and level-II scales. The level-II scales are modeled using higher-order bubble functions that are then variationally embedded in the level-I formulation to stabilize it. The level-I problem is modeled via a second set of bubble functions that are linearly independent of the bubbles employed at level-II. Finally, the resulting level-I fine-scales are variationally embedded in the coarse-scale formulation. This yields a residual-based turbulence model for the larger or coarser-scales. A significant feature of the proposed method is that it results in a concurrent top-down and bottom up two-way nesting of the scales. In addition, the resulting turbulence model does not possess any embedded tunable parameters. Another attribute of the formulation is that the fine scales at every level are driven by the residuals of the Euler-Lagrange equations of the coarser scales at the preceding levels, thereby resulting in a method that is variationally consistent. Various algorithmic generalizations of the method are presented that lead to computationally economic residual-based turbulence models. The proposed telescopic depth in scales approach helps make these models accurate for low order tetrahedral and hexahedral elements, a feature that is facilitated by the higher-order bubble functions over element interiors and it results in an enhanced representation of the fine-scale terms modeling the fine viscous effects. From a computational perspective this method results in easy-to-implement equal-order pressure-velocity elements, and possesses the desirable p-refinement feature. Numerical performance of the method is assessed on turbulent channel flow problems at Re = 395 and Re = 590. Also presented are the results for turbulent SD-7003 airfoil at Re — 60,000 and comparison is made with the published experimental data and numerical results.
机译:本文为不可压缩的Navier-Stokes方程提供了基于三级残差的湍流模型。利用变分多尺度(VMS)框架,将速度场和压力场分解为两个重叠的分层尺度,从而导致系统耦合的混合场问题。通过随后的VMS应用稳定了细尺度上的混合问题,该应用导致细尺度速度场进一步分解为I级和II级尺度。使用高阶气泡函数对II级标度建模,然后将其可变地嵌入I级配方中以使其稳定。通过第二组气泡函数对I级问题进行建模,该第二组气泡函数与II级所采用的气泡线性无关。最后,将所得的I级细尺度可变地嵌入到粗尺度公式中。这将为较大或更粗糙的比例生成基于残差的湍流模型。所提出的方法的一个重要特征是,它导致了秤的自上而下和自下而上的双向嵌套。此外,所得湍流模型不具有任何嵌入式可调参数。公式的另一个属性是,每个级别的精细比例都是由先前级别的较粗比例尺的Euler-Lagrange方程的残差驱动的,从而产生了变化一致的方法。提出了该方法的各种算法概括,从而导致了计算上经济的基于残差的湍流模型。拟议的伸缩式深度标度方法有助于使这些模型对于低阶四面体和六面体元素准确无误,而元素内部的高阶气泡函数促进了这一功能,并增强了建模细尺度项的能力。良好的粘性效果。从计算的角度来看,此方法可实现易于实现的等阶压力-速度元素,并具有理想的p精化特征。在Re = 395和Re = 590的湍流通道流动问题上评估了该方法的数值性能。还介绍了在Re — 60,000时SD-7003湍流翼型的结果,并与已发布的实验数据和数值结果进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号