首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Bayesian uncertainty quantification and propagation for discrete element simulations of granular materials
【24h】

Bayesian uncertainty quantification and propagation for discrete element simulations of granular materials

机译:贝叶斯不确定性量化和传播,用于颗粒材料的离散元素模拟

获取原文
获取原文并翻译 | 示例

摘要

Predictions in the behavior of granular materials using Discrete Element Methods (DEM) hinge on the employed interaction potentials. Here we introduce a data driven, Bayesian framework to quantify DEM predictions. Our approach relies on experimentally measured coefficients of restitution for single steel particle-wall collisions. The calibration data entail both tangential and normal coefficients of restitution, for varying impact angles and speeds of the bouncing particle. The parametric uncertainty in multiple Force-Displacement models is estimated using an enhanced Transitional Markov Chain Monte Carlo implemented efficiently on parallel computer architectures. In turn, the parametric model uncertainties are propagated to predict Quantities of Interest (Qol) for two testbed applications: silo discharge and vibration induced mass-segregation. This work demonstrates that the classical way of calibrating DEM potentials, through parameter optimization, is insufficient and it fails to provide robust predictions. The present Bayesian framework provides robust predictions for the behavior of granular materials using DEM simulations. Most importantly the results demonstrate the importance of including parametric and modeling uncertainties in the potentials employed in Discrete Element Methods.
机译:使用离散元素方法(DEM)预测颗粒材料的行为取决于所采用的相互作用势。在这里,我们介绍了一个数据驱动的贝叶斯框架来量化DEM预测。我们的方法依赖于单钢颗粒-壁碰撞的实验测得的恢复系数。对于变化的撞击角度和弹跳粒子的速度,校准数据需要同时包含切向和法向恢复系数。使用在并行计算机体系结构上有效实现的增强型过渡马尔可夫链蒙特卡洛方法,可以估算出多个力-位移模型中的参数不确定性。反过来,将传播参数模型的不确定性,以预测两种试验台应用的感兴趣量(Qol):筒仓排放和振动引起的质量偏析。这项工作表明,通过参数优化来校准DEM势的经典方法是不够的,并且无法提供可靠的预测。当前的贝叶斯框架使用DEM模拟为颗粒材料的行为提供了可靠的预测。最重要的是,结果证明了在离散元素方法中使用的电势中包括参数和模型不确定性的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号