首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Guaranteed upper-lower bounds on homogenized properties by FFT-based Galerkin method
【24h】

Guaranteed upper-lower bounds on homogenized properties by FFT-based Galerkin method

机译:通过基于FFT的Galerkin方法保证均质化属性的上下限

获取原文
获取原文并翻译 | 示例

摘要

Guaranteed upper-lower bounds on homogenized coefficients, arising from the periodic cell problem, are calculated in a scalar elliptic setting. Our approach builds on the recent variational reformulation of the Moulinec-Suquet (1994) Fast Fourier Transform (FFT) homogenization scheme by Vondreje et al. (2014), which is based on the conforming Galerkin approximation with trigonometric polynomials. Upper-lower bounds are obtained by adjusting the primal-dual finite element framework developed independently by Dvorak (1993) and Wieckowski (1995) to the FFT-based Galerkin setting. We show that the discretization procedure differs for odd and non-odd number of grid points. Thanks to the Helmholtz decomposition inherited from the continuous formulation, the duality structure is fully preserved for the odd discretizations. In the latter case, a more complex primal-dual structure is observed due to presence of the trigonometric polynomials associated with the Nyquist frequencies. These theoretical findings are confirmed with numerical examples. To conclude, the main advantage of the FFT-based approach over conventional finite-element schemes is that the primal and the dual problems are treated on the same basis, and this property can be extended beyond the scalar elliptic setting. (C) 2015 Elsevier B.V. All rights reserved.
机译:由周期单元问题引起的均质系数的有保证的上下界是在标量椭圆设置中计算的。我们的方法建立在Vondreje等人最近对Moulinec-Suquet(1994)快速傅立叶变换(FFT)均质化方案的变分形式化基础上。 (2014),它基于符合三角多项式的Galerkin逼近。通过将Dvorak(1993)和Wieckowski(1995)独立开发的原始对偶有限元框架调整为基于FFT的Galerkin设置,即可获得上限。我们证明离散化过程对于奇数和非奇数的网格点是不同的。由于从连续公式继承而来的亥姆霍兹分解,对偶结构完全保留为奇数离散。在后一种情况下,由于存在与奈奎斯特频率相关的三角多项式,因此观察到了更复杂的原始对偶结构。这些理论发现通过数值示例得到了证实。总而言之,与传统的有限元方案相比,基于FFT的方法的主要优势在于可以在相同的基础上处理原始问题和对偶问题,并且可以将此特性扩展到标量椭圆设置之外。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号