首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Continuum approach to computational multiscale modeling of propagating fracture
【24h】

Continuum approach to computational multiscale modeling of propagating fracture

机译:连续介质计算裂缝扩展的多尺度模拟方法

获取原文
获取原文并翻译 | 示例

摘要

A new approach to two-scale modeling of propagating fracture, based on computational homogenization (FE2), is presented. The specific features of the approach are: (a) a continuum setting for representation of the fracture at both scales based on the Continuum Strong Discontinuity Approach (CSDA), and (b) the use, for the considered non-smooth (discontinuous) problem, of the same computational homogenization framework than for classical smooth cases. As a key issue, the approach retrieves a characteristic length computed at the lower scale, which is exported to the upper one and used therein as a regularization parameter for a propagating strong discontinuity kinematics. This guarantees the correct transfer of fracture energy between scales and the proper dissipation at the upper scale. Representative simulations show that the resulting formulation provides consistent results, which are objective with respect to size and bias of the upper-scale mesh, and with respect to the size of the lower-scale RVE/failure cell, as well as the capability to model propagating cracks at the upper scale, in combination with crack-path-field and strain injection techniques. The continuum character of the approach confers to the formulation a minimal intrusive character, with respect to standard procedures for multi-scale computational homogenization. (C) 2015 Elsevier B.V. All rights reserved.
机译:提出了一种基于计算均质化(FE2)的裂缝扩展的两尺度建模新方法。该方法的具体特征是:(a)基于连续强不连续性方法(CSDA)在两个尺度上表示骨折的连续性设置,以及(b)用于考虑的非光滑(不连续)问题的方法的计算均质性框架与经典平滑情况相同。作为一个关键问题,该方法检索以较低尺度计算的特征长度,该特征长度被导出到较高尺度,并在其中用作正则化参数,用于传播强不连续运动学。这样可以保证在栅尺之间正确地传递断裂能,并在上部栅尺上实现适当的耗散。代表性的模拟结果表明,所得的配方提供了一致的结果,这些结果相对于较大规模的网格的大小和偏差,较低规模的RVE /失效单元的大小以及建模能力而言都是客观的与裂纹路径场和应变注入技术相结合,在较高的范围内扩展裂纹。相对于用于多尺度计算均质化的标准程序,该方法的连续性使公式具有最小的侵入性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号