首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A probabilistic collocation Eulerian-Lagrangian localized adjoint method on sparse grids for assessing CO2 leakage through wells in randomly heterogeneous porous media
【24h】

A probabilistic collocation Eulerian-Lagrangian localized adjoint method on sparse grids for assessing CO2 leakage through wells in randomly heterogeneous porous media

机译:稀疏网格上的概率搭配欧拉-拉格朗日局部伴随方法,用于评估随机非均质多孔介质中通过井的CO2泄漏

获取原文
获取原文并翻译 | 示例

摘要

We develop a probabilistic collocation Eulerian-Lagrangian localized adjoint method on sparse grids for assessing CO2 leakage through wells in randomly heterogeneous porous media, by utilizing the intrinsic mathematical, numerical, and physical properties of the mathematical model. We model the process in which CO2 is injected into a deep aquifer, spreads within the aquifer and, upon reaching a leaky well, rises up to a shallower aquifer, to quantify the leakage rate, which depends on the pressure build-up in the aquifer due to injection and the buoyancy of CO2. The underlying Eulerian-Lagrangian framework has high potential to improve the efficiency and accuracy for the numerical simulation of complex flow and transport processes in CO2 sequestration. The sparse grid probabilistic collocation framework adds computationally efficient uncertainty quantification functionality onto pre-existing Eulerian-Lagrangian methods in a nonintrusive manner. It also provides a scalable framework to consider uncertainty in a straightforward parallel manner. Preliminary numerical experiments show the feasibility and potential of the method. (C) 2014 Elsevier B.V. All rights reserved.
机译:我们通过利用数学模型的内在数学,数值和物理特性,在稀疏网格上开发了概率搭配的欧拉-拉格朗日局部伴随方法,以评估通过随机异质多孔介质中的油井泄漏的二氧化碳。我们对将二氧化碳注入深层含水层,在含水层内扩散,到达泄漏井时上升到浅层含水层的过程进行建模,以量化泄漏率,这取决于含水层中的压力积累由于注入和CO2的浮力。潜在的Eulerian-Lagrangian框架具有很高的潜力,可以提高二氧化碳封存中复杂流动和运输过程数值模拟的效率和准确性。稀疏网格概率搭配框架以非侵入方式将计算效率高的不确定性量化功能添加到预先存在的欧拉-拉格朗日方法上。它还提供了一个可扩展的框架,可以直接并行地考虑不确定性。初步的数值实验表明了该方法的可行性和潜力。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号