首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Adaptive reduced-basis generation for reduced-order modeling for the solution of stochastic nondestructive evaluation problems
【24h】

Adaptive reduced-basis generation for reduced-order modeling for the solution of stochastic nondestructive evaluation problems

机译:自适应降基生成用于降阶建模,以解决随机无损评估问题

获取原文
获取原文并翻译 | 示例

摘要

A novel algorithm for creating a computationally efficient approximation of a system response that is defined by a boundary value problem is presented. More specifically, the approach presented is focused on substantially reducing the computational expense required to approximate the solution of a stochastic partial differential equation, particularly for the purpose of estimating the solution to an associated nondestructive evaluation problem with significant system uncertainty. In order to achieve this computational efficiency, the approach combines reduced-basis reduced-order modeling with a sparse grid collocation surrogate modeling technique to estimate the response of the system of interest with respect to any designated unknown parameters, provided the distributions are known. The reduced-order modeling component includes a novel algorithm for adaptive generation of a data ensemble based on a nested grid technique, to then create the reduced-order basis. The capabilities and potential applicability of the approach presented are displayed through two simulated case studies regarding inverse characterization of material properties for two different physical systems involving some amount of significant uncertainty. The first case study considered characterization of an unknown localized reduction in stiffness of a structure from simulated frequency response function based nondestructive testing. Then, the second case study considered characterization of an unknown temperature-dependent thermal conductivity of a solid from simulated thermal testing. Overall, the surrogate modeling approach was shown through both simulated examples to provide accurate solution estimates to inverse problems for systems represented by stochastic partial differential equations with a fraction of the typical computational cost. (C) 2016 Elsevier B.V. All rights reserved.
机译:提出了一种新颖的算法,用于创建由边界值问题定义的系统响应的计算有效近似。更具体地,所提出的方法集中在基本上减少近似随机偏微分方程的解所需的计算费用上,特别是为了估计具有显着系统不确定性的相关无损评估问题的解。为了获得这种计算效率,该方法将降基降阶建模与稀疏网格搭配替代建模技术相结合,以估计感兴趣系统相对于任何指定未知参数的响应,前提是已知分布。降阶建模组件包括一种新颖的算法,用于基于嵌套网格技术自适应生成数据集合,然后创建降阶基础。通过两个模拟案例研究,展示了该方法的功能和潜在适用性,这两个案例涉及两个不同物理系统的材料特性的逆表征,其中涉及一些显着不确定性。第一个案例研究考虑了基于基于模拟频率响应函数的无损检测来确定结构刚度的未知局部降低的特征。然后,第二个案例研究考虑了通过模拟热测试表征未知的与温度相关的固体导热系数。总体而言,通过两个模拟示例都显示了替代建模方法,从而为具有随机典型偏微分方程的系统的反问题提供了精确的解决方案估计,而计算费用却只有一部分。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号